Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1216352, 2023.
Article in English | MEDLINE | ID: mdl-37539048

ABSTRACT

cDC2s occur abundantly in peripheral tissues and arise from circulating blood cDC2s. However, the factors governing cDC2 differentiation in tissues, especially under inflammatory conditions, remained poorly defined. We here found that psoriatic cDC2s express the efferocytosis receptor Axl and exhibit a bone morphogenetic protein (BMP) and p38MAPK signaling signature. BMP7, strongly expressed within the lesional psoriatic epidermis, cooperates with canonical TGF-ß1 signaling for inducing Axl+cDC2s from blood cDC2s in vitro. Moreover, downstream induced p38MAPK promotes Axl+cDC2s at the expense of Axl+CD207+ Langerhans cell differentiation from blood cDC2s. BMP7 supplementation allowed to model cDC2 generation and their further differentiation into LCs from CD34+ hematopoietic progenitor cells in defined serum-free medium. Additionally, p38MAPK promoted the generation of another cDC2 subset lacking Axl but expressing the non-classical NFkB transcription factor RelB in vitro. Such RelB+cDC2s occurred predominantly at dermal sites in the inflamed skin. Finally, we found that cDC2s can be induced to acquire high levels of the monocyte lineage identity factor kruppel-like-factor-4 (KLF4) along with monocyte-derived DC and macrophage phenotypic characteristics in vitro. In conclusion, inflammatory and psoriatic epidermal signals instruct blood cDC2s to acquire phenotypic characteristics of several tissue-resident cell subsets.


Subject(s)
Dendritic Cells , Monocytes , Humans , Monocytes/metabolism , Dendritic Cells/metabolism , Cell Differentiation , Skin , Epidermis/metabolism
2.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142362

ABSTRACT

The systemic nature of COVID-19 with multiple extrapulmonary manifestations of disease, largely due to the wide tissue expression of SARS-CoV-2 major entry factors, as well as the patient-specific features of COVID-19 pathobiology, determine important directions for basic and translational research. In the current study, we addressed the questions of singularities and commonalities in cellular responses to SARS-CoV-2 and related SARS-CoV on the basis of compendium-wide analysis of publicly available transcriptomic datasets as part of the herein implemented multi-modular UNCOVIDING approach. We focused on cellular models attributed to the epithelial cells of the respiratory system, the Calu-3 cell line, and epithelial cells of the gastrointestinal tract, the Caco-2 cell line, infected with either SARS-CoV-2 or SARS-CoV. Here, we report the outcome of a comparative analysis based on differentially expressed genes in terms of perturbations and diseases, Canonical pathways, and Upstream Regulators. We furthermore performed compendium-wide analysis across more than 19,000 mRNASeq datasets and dissected the condition-specific gene signatures. Information was gained with respect to common and unique cellular responses and molecular events. We identified that in cell lines of colon or lung origin, both viruses show similarities in cellular responses; by contrast, there are cell type-specific regulators that differed for Calu-3 and Caco-2 cells. Among the major findings is the impact of the interferon system for lung Calu-3 cells and novel links to the liver- and lipid-metabolism-associated responses for colon Caco-2 cells as part of the extrapulmonary pathomechanisms in the course of COVID-19. Among differently expressed genes, we specifically dissected the expression pattern of the APOBEC family members and propose APOBEC3G as a promising intrinsic antiviral factor of the host response to SARS-CoV-2. Overall, our study provides gene expression level evidence for the cellular responses attributed to pulmonary and gastrointestinal manifestations of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , COVID-19/genetics , Caco-2 Cells , Colon , Humans , Interferons , Lipids , Lung
3.
mSphere ; 7(4): e0033522, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35943162

ABSTRACT

Leishmaniaviruses (LRVs) have been demonstrated to enhance progression of leishmaniasis, a vector-transmitted disease with a wide range of clinical manifestations that is caused by flagellates of the genus Leishmania. Here, we used two previously proposed strategies of the LRV ablation to shed light on the relationships of two Leishmania spp. with their respective viral species (L. guyanensis, LRV1 and L. major, LRV2) and demonstrated considerable difference between two studied systems. LRV1 could be easily eliminated by the expression of exogenous capsids regardless of their origin (the same or distantly related LRV1 strains, or even LRV2), while LRV2 was only partially depleted in the case of the native capsid overexpression. The striking differences were also observed in the effects of complete viral elimination with 2'C-methyladenosine (2-CMA) on the transcriptional profiles of these two Leishmania spp. While virtually no differentially expressed genes were detected after the LRV1 removal from L. guyanensis, the response of L. major after ablation of LRV2 involved 87 genes, the analysis of which suggested a considerable stress experienced even after several passages following the treatment. This effect on L. major was also reflected in a significant decrease of the proliferation rate, not documented in L. guyanensis and naturally virus-free strain of L. major. Our findings suggest that integration of L. major with LRV2 is deeper compared with that of L. guyanensis with LRV1. We presume this determines different effects of the viral presence on the Leishmania spp. infections. IMPORTANCE Leishmania spp. represent human pathogens that cause leishmaniasis, a widespread parasitic disease with mild to fatal clinical manifestations. Some strains of leishmaniae bear leishmaniaviruses (LRVs), and this has been shown to aggravate disease course. We investigated the relationships of two distally related Leishmania spp. with their respective LRVs using different strategies of virus removal. Our results suggest the South American L. guyanensis easily loses its virus with no important consequences for the parasite in the laboratory culture. Conversely, the Old-World L. major is refractory to virus removal and experiences a prominent stress if this removal is nonetheless completed. The drastically different levels of integration between the studied Leishmania spp. and their viruses suggest distinct effects of the viral presence on infections in these species of parasites.


Subject(s)
Leishmania , Leishmaniasis , Leishmaniavirus , Capsid Proteins , Humans , Leishmania/genetics , Leishmaniasis/parasitology , Leishmaniavirus/genetics
4.
Biodivers Data J ; 10: e77669, 2022.
Article in English | MEDLINE | ID: mdl-35095299

ABSTRACT

BACKGROUND: The history of biological collections and digitisation initiatives in northern West Siberia is relatively new due to recent development of the region. The Center for Biodiversity Data Mobilization was established to promote the initiative, led by the Yugra State University. This organisation itself has a relatively young collection of biological specimens, which was, until recently, in a disintegrated state and only partly mobilised. The Yugra State University Biological Collection (YSU BC) currently includes three subdivisions differring by history and taxonomic groups, but also by details of management and storage conditions: the Fungarium, the Bryological collection and the Herbarium collection of YSU.The paper describes the general structure of the Yugra State University Biological Collection, its history, storage conditions, management practices, geographical, temporal and taxonomical coverage. The paper is underlined by three datasets of the collections databases published in GBIF, which are described in detail. The databases are managed in Specify 6 and 7 software and accessed through Specify Web Portal and through GBIF. NEW INFORMATION: The Yugra State University Biological Collection made an active reorganisation of physical storage conditions and data management recently, providing the model for other collections in the region. This paper describes the history, general structure, management practices and data management of all three parts of this collection for the first time.Although one part of the collection (Fungarium YSU) was mobilised earlier, last year, we mobilised data of the Bryological and Vascular plants (Herbarium) collections. The three datasets of the corresponding collections in GBIF were increased by about 6000 georeferenced records during the last year.

5.
Front Immunol ; 12: 690416, 2021.
Article in English | MEDLINE | ID: mdl-34276680

ABSTRACT

The AID (activation-induced cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme catalytic subunit) family with its multifaceted mode of action emerges as potent intrinsic host antiviral system that acts against a variety of DNA and RNA viruses including coronaviruses. All family members are cytosine-to-uracil deaminases that either have a profound role in driving a strong and specific humoral immune response (AID) or restricting the virus itself by a plethora of mechanisms (APOBECs). In this article, we highlight some of the key aspects apparently linking the AID/APOBECs and SARS-CoV-2. Among those is our discovery that APOBEC4 shows high expression in cell types and anatomical parts targeted by SARS-CoV-2. Additional focus is given by us to the lymphoid structures and AID as the master regulator of germinal center reactions, which result in antibody production by plasma and memory B cells. We propose the dissection of the AID/APOBECs gene signature towards decisive determinants of the patient-specific and/or the patient group-specific antiviral response. Finally, the patient-specific mapping of the AID/APOBEC polymorphisms should be considered in the light of COVID-19.


Subject(s)
APOBEC-1 Deaminase/genetics , COVID-19/enzymology , COVID-19/immunology , Cytidine Deaminase/genetics , SARS-CoV-2/genetics , Transcriptome , Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19/virology , Germinal Center/immunology , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Humoral/genetics , Plasma Cells/immunology , Polymorphism, Genetic , RNA Editing/genetics , RNA, Viral/genetics
6.
Eur J Immunol ; 51(7): 1854-1856, 2021 07.
Article in English | MEDLINE | ID: mdl-33768654

ABSTRACT

Gene profiling revealed that the S1P signaling pathway is induced by TGF-ß1 during LC commitment of monocytopoietic cells. Constitutive-active TGF-ß1-S1P signaling seems to elevate the activation threshold of LCs and thereby prevent inappropriate and overshooting immune responses to microbial and physicochemical environmental signals. In turn, signals that lead to LC migration may disrupt this pathway via inhibiting S1P bioavailability.


Subject(s)
Cell Differentiation/physiology , Dendritic Cells/metabolism , Langerhans Cells/metabolism , Lysophospholipids/metabolism , Signal Transduction/physiology , Sphingosine/analogs & derivatives , Transforming Growth Factor beta1/metabolism , Cell Movement/physiology , Cells, Cultured , Humans , Sphingosine/metabolism
7.
Cancers (Basel) ; 12(11)2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33113874

ABSTRACT

The gut-associated lymphoid tissue represents an integral part of the immune system. Among the powerful players of the mucosa-associated lymphoid tissue are isolated lymphoid structures (ILSs), which as information centers, drive the local (and systemic) adaptive immune responses. Germinal center reactions, taking place within ILSs, involve the coordinated action of various immune cell types with a central role given to B cells. In the current study, we aimed at dissecting the impact of ILSs within non-tumorous colon tissue (NT) on the pathobiology of colorectal cancer (CRC) with metastasis in the liver (CRCLM). In particular, we focused on the immune phenotypes of ILSs and ectopic lymphoid structures (ELSs), built up at matching primary and metastatic tumor sites. We implemented an integrative analysis strategy on the basis of tissue image cytometry and clonality assessment to explore the immune phenotype of ILS/ELS at three tissue entities: NT, CRC, and CRCLM (69 specimens in total). Applying a panel of lineage markers used for immunostaining, we characterized and compared the anatomical features, the cellular composition, the activation, and proliferation status of ILSs and ELSs, and assessed the clinical relevance of staining-derived data sets. Our major discovery was that ILS characteristics at the NT site predefine the immune phenotype of ELSs at CRC and CRCLM. Thereby, B-cell-enriched (CD20) and highly proliferative (Ki67) ILSs and ELSs were found to be associated with improved clinical outcome in terms of survival and enabled patient stratification into risk groups. Moreover, the data revealed a linkage between B-cell clonality at the NT site and the metastatic characteristics of the tumor in the distant liver tissue. Consolidation of immunostaining-based findings with the results of compendium-wide transcriptomic analysis furthermore proposed CD27 as a novel marker of T follicular helper cells within lymphoid structures. Overall, the study nominates the ILS immune phenotype as a novel prognostic marker for patients with metastatic CRC.

8.
Cancers (Basel) ; 12(2)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979221

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is currently treated with cytoreductive surgery and platinum-based chemotherapy. The majority of patients show a primary response; however, many rapidly develop drug resistance. Antiestrogens have been studied as low toxic treatment options for HGSOC, with higher response rates in platinum-sensitive cases. Mechanisms for this difference in response remain unknown. Therefore, the present study investigated the impact of platinum resistance on steroid metabolism in six established HGSOC cell lines sensitive and resistant against carboplatin using a high-resolution mass spectrometry assay to simultaneously quantify the ten main steroids of the estrogenic metabolic pathway. An up to 60-fold higher formation of steroid hormones and their sulfated or glucuronidated metabolites was observed in carboplatin-sensitive cells, which was reversible by treatment with interleukin-6 (IL-6). Conversely, treatment of carboplatin-resistant cells expressing high levels of endogenous IL-6 with the monoclonal anti-IL-6R antibody tocilizumab changed their status to "platinum-sensitive", exhibiting a decreased IC50 value for carboplatin, decreased growth, and significantly higher estrogen metabolism. Analysis of these metabolic differences could help to detect platinum resistance in HGSOC patients earlier, thereby allowing more efficient interventions.

9.
Comput Struct Biotechnol J ; 17: 537-560, 2019.
Article in English | MEDLINE | ID: mdl-31049165

ABSTRACT

The sphingolipid and lysophosphatidate regulatory networks impact diverse mechanisms attributed to cancer cells and the tumor immune microenvironment. Deciphering the complexity demands implementation of a holistic approach combined with higher-resolution techniques. We implemented a multi-modular integrative approach consolidating the latest accomplishments in gene expression profiling, prognostic/predictive modeling, next generation digital pathology, and systems biology for epithelial ovarian cancer. We assessed patient-specific transcriptional profiles using the sphingolipid/lysophosphatidate/immune-associated signature. This revealed novel sphingolipid/lysophosphatidate-immune gene-gene associations and distinguished tumor subtypes with immune high/low context. These were characterized by robust differences in sphingolipid-/lysophosphatidate-related checkpoints and the drug response. The analysis also nominates novel survival models for stratification of patients with CD68, LPAR3, SMPD1, PPAP2B, and SMPD2 emerging as the most prognostically important genes. Alignment of proprietary data with curated transcriptomic data from public databases across a variety of malignancies (over 600 categories; over 21,000 arrays) showed specificity for ovarian carcinoma. Our systems approach identified novel sphingolipid-lysophosphatidate-immune checkpoints and networks underlying tumor immune heterogeneity and disease outcomes. This holds great promise for delivering novel stratifying and targeting strategies.

10.
Front Pharmacol ; 9: 742, 2018.
Article in English | MEDLINE | ID: mdl-30042681

ABSTRACT

The role of resveratrol (RES) in preventing breast cancer is controversial, as low concentrations may stimulate the proliferation of estrogen-receptor alpha positive (ERα+) breast cancer cells. As metabolism is the key factor in altering cellular estrogens, thereby influencing breast tumor growth, we investigated the effects of RES on the formation of estrogen metabolites, namely 4-androstene-3,17-dione (AD), dehydroepiandrosterone (DHEA), dehydroepiandrosterone-3-O-sulfate (DHEA-S), estrone (E1), estrone-3-sulfate (E1-S), 17ß-estradiol (E2), 17ß-estradiol-3-O-(ß-D-glucuronide) (E2-G), 17ß-estradiol-3-O-sulfate (E2-S), 16α-hydroxy-17ß-estradiol (estriol, E3), and testosterone (T) in ERα- MDA-MB-231 and ERα+ MCF-7 cells. Incubation of both of the cell lines with the hormone precursors DHEA and E1 revealed that sulfation and glucuronidation were preferred metabolic pathways for DHEA, E1 and E2 in MCF-7 cells, compared with in MDA-MB-231 cells, as the Vmax values were significantly higher (DHEA-S: 2873.0 ± 327.4 fmol/106 cells/h, E1-S: 30.4 ± 2.5 fmol/106 cells/h, E2-S: 24.7 ± 4.9 fmol/106 cells/h, E2-G: 7.29 ± 1.36 fmol/106 cells/h). RES therefore significantly inhibited DHEA-S, E1-S, E2-S and E2-G formation in MCF-7, but not in MDA-MB-231 cells (Kis: E2-S, 0.73 ± 0.07 µM < E1-S, 0.94 ± 0.03 µM < E2-G, 7.92 ± 0.24 µM < DHEA-S, 13.2 ± 0.2 µM). Suppression of these metabolites subsequently revealed twofold higher levels of active E2, concomitant with an almost twofold increase in MCF-7 cell proliferation, which was the most pronounced upon the addition of 5 µM RES. As the content of RES in food is relatively low, an increased risk of breast cancer progression in women is likely to only be observed following the continuous consumption of high-dose RES supplements. Further long-term human studies simultaneously monitoring free estrogens and their conjugates are therefore highly warranted to evaluate the efficacy and safety of RES supplementation, particularly in patients diagnosed with ERα+ breast cancer.

11.
PLoS One ; 12(7): e0180900, 2017.
Article in English | MEDLINE | ID: mdl-28742108

ABSTRACT

A crucial role of cell metabolism in immune cell differentiation and function has been recently established. Growing evidence indicates that metabolic processes impact both, innate and adaptive immunity. Since a down-stream integrator of metabolic alterations, mammalian target of rapamycin (mTOR), is responsible for controlling the balance between pro-inflammatory interleukin (IL)-12 and anti-inflammatory IL-10, we investigated the effect of upstream interference using metabolic modulators on the production of pro- and anti-inflammatory cytokines. Cytokine release and protein expression in human and murine myeloid cells was assessed after toll-like receptor (TLR)-activation and glucose-deprivation or co-treatment with 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activators. Additionally, the impact of metabolic interference was analysed in an in-vivo mouse model. Glucose-deprivation by 2-deoxy-D-glucose (2-DG) increased the production of IL-12p40 and IL-23p19 in monocytes, but dose-dependently inhibited the release of anti-inflammatory IL-10. Similar effects have been observed using pharmacological AMPK activation. Consistently, an inhibition of the tuberous sclerosis complex-mTOR pathway was observed. In line with our in vitro observations, glycolysis inhibition with 2-DG showed significantly reduced bacterial burden in a Th2-prone Listeria monocytogenes mouse infection model. In conclusion, we showed that fasting metabolism modulates the IL-12/IL-10 cytokine balance, establishing novel targets for metabolism-based immune-modulation.


Subject(s)
Fasting/metabolism , Interleukin-10/metabolism , Interleukin-12/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Bacterial Load , Cells, Cultured , Deoxyglucose/pharmacology , Disease Models, Animal , Female , Humans , Listeriosis/immunology , Listeriosis/metabolism , Listeriosis/microbiology , Metabolome , Mice , Mice, Inbred BALB C , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Toll-Like Receptors/metabolism
12.
Sci Rep ; 7(1): 1313, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28465562

ABSTRACT

Neuroendocrine tumors may present with pseudoallergic reactions like diarrhea and idiopathic anaphylaxis. Here we present the P-STS human ileal neuroendocrine cell line as a model cell line for these tumors. Neuroendocrine markers and changes in cytoplasmic calcium concentration ([Ca2+]i) in response to several possible activators of 5-hydroxytryptamine (5-HT) release were analyzed. P-STS cells still expressed chromogranin A and synaptophysin after 2 years of culture. Tryptophan hydroxylase 1 mRNA and a low amount of 5-HT were also detected. Acetylcholine (ACh) caused a rise in [Ca2+]i. Somatostatin inhibited, whereas histamine (HA) but not the HA receptor ligand betahistine enhanced activation by ACh. The [Ca2+]i response to ACh/HA was inhibited by the HA receptor H3 (H3R) agonist methimepip and by the antidepressant imipramine. Further [Ca2+]i response studies indicated the presence of H4Rs and of a functional calcium sensing receptor. High or low affinity IgE receptor protein or mRNA were not detected. Taken together, neuroendocrine markers and response to intestinal neurotransmitters approve the P-STS cell line as a valuable model for enterochromaffin cells. Enhancement of their ACh-induced pro-secretory response by HA, with a role for H3R and H4R, suggests an amplifying role of neuroendocrine cells in allergen-induced diarrhea or anaphylaxis.


Subject(s)
Acetylcholine/pharmacology , Histamine/metabolism , Ileal Neoplasms/drug therapy , Neuroendocrine Tumors/drug therapy , Betahistine/pharmacology , Calcium/metabolism , Cell Line, Tumor , Chromogranin A/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Histamine/genetics , Humans , Ileal Neoplasms/genetics , Ileal Neoplasms/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Receptors, Histamine H3/genetics , Receptors, Histamine H3/metabolism , Receptors, Histamine H4/genetics , Receptors, Histamine H4/metabolism , Serotonin/genetics , Somatostatin/pharmacology , Synaptophysin/pharmacology , Tryptophan Hydroxylase/genetics
13.
Expert Opin Ther Targets ; 21(7): 725-737, 2017 07.
Article in English | MEDLINE | ID: mdl-28524744

ABSTRACT

INTRODUCTION: Sphingolipids belong to a complex class of lipid molecules that are crucially involved in the regulation of important biological processes including proliferation, migration and apoptosis. Given the significant progress made in understanding the sphingolipid pathobiology of several diseases, sphingolipid-related checkpoints emerge as attractive targets. Recent data indicate the multifaceted contribution of the sphingolipid machinery to osteoclast - osteoblast crosstalk, representing one of the pivotal interactions underlying bone homeostasis. Imbalances in the interplay of osteoblasts and osteoclasts might lead to bone-related diseases such as osteoporosis, rheumatoid arthritis, and bone metastases. Areas covered: We summarize and analyze the progress made in bone research in the context of the current knowledge of sphingolipid-related mechanisms regulating bone remodeling. Particular emphasis was given to bioactive sphingosine 1-phosphate (S1P) and S1P receptors (S1PRs). Moreover, the mechanisms of how dysregulations of this machinery cause bone diseases, are covered. Expert opinion: In the context of bone diseases, pharmacological interference with sphingolipid machinery may lead to novel directions in therapeutic strategies. Implementation of knowledge derived from in vivo animal models and in vitro studies using pharmacological agents to manipulate the S1P/S1PRs axes suggests S1PR2 and S1PR3 as potential drug targets, particularly in conjunction with technology for local drug delivery.


Subject(s)
Bone Diseases/drug therapy , Bone Remodeling/drug effects , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Animals , Bone Diseases/pathology , Bone and Bones/metabolism , Drug Delivery Systems , Drug Design , Humans , Osteoblasts/metabolism , Osteoclasts/metabolism , Receptors, Lysosphingolipid/metabolism , Signal Transduction/drug effects , Sphingolipids/metabolism , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors
14.
J Allergy Clin Immunol ; 139(6): 1873-1884.e10, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27742396

ABSTRACT

BACKGROUND: Langerhans cell (LC) networks play key roles in immunity and tolerance at body surfaces. LCs are established prenatally and can be replenished from blood monocytes. Unlike skin-resident dermal DCs (dDCs)/interstitial-type DCs and inflammatory dendritic epidermal cells appearing in dermatitis/eczema lesions, LCs lack key monocyte-affiliated markers. Inversely, LCs express various epithelial genes critical for their long-term peripheral tissue residency. OBJECTIVE: Dendritic cells (DCs) are functionally involved in inflammatory diseases; however, the mechanisms remained poorly understood. METHODS: In vitro differentiation models of human DCs, gene profiling, gene transduction, and immunohistology were used to identify molecules involved in DC subset specification. RESULTS: Here we identified the monocyte/macrophage lineage identity transcription factor Kruppel-like factor 4 (KLF4) to be inhibited during LC differentiation from human blood monocytes. Conversely, KLF4 is maintained or induced during dermal DC and monocyte-derived dendritic cell/inflammatory dendritic epidermal cell differentiation. We showed that in monocytic cells KLF4 has to be repressed to allow their differentiation into LCs. Moreover, respective KLF4 levels in DC subsets positively correlate with proinflammatory characteristics. We identified epithelial Notch signaling to repress KLF4 in monocytes undergoing LC commitment. Loss of KLF4 in monocytes transcriptionally derepresses Runt-related transcription factor 3 in response to TGF-ß1, thereby allowing LC differentiation marked by a low cytokine expression profile. CONCLUSION: Monocyte differentiation into LCs depends on activation of Notch signaling and the concomitant loss of KLF4.


Subject(s)
Dendritic Cells/cytology , Kruppel-Like Transcription Factors/metabolism , Monocytes/cytology , Skin/cytology , Adult , Cell Differentiation/physiology , Cells, Cultured , Dendritic Cells/metabolism , Embryo, Mammalian , Fetal Blood/cytology , Humans , Inflammation/metabolism , Kruppel-Like Factor 4 , Monocytes/metabolism , Transforming Growth Factor beta1/pharmacology
15.
BMC Genomics ; 17(1): 643, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27527602

ABSTRACT

BACKGROUND: Building up of pathway-/disease-relevant signatures provides a persuasive tool for understanding the functional relevance of gene alterations and gene network associations in multifactorial human diseases. Ovarian cancer is a highly complex heterogeneous malignancy in respect of tumor anatomy, tumor microenvironment including pro-/antitumor immunity and inflammation; still, it is generally treated as single disease. Thus, further approaches to investigate novel aspects of ovarian cancer pathogenesis aiming to provide a personalized strategy to clinical decision making are of high priority. Herein we assessed the contribution of the AID/APOBEC family and their associated genes given the remarkable ability of AID and APOBECs to edit DNA/RNA, and as such, providing tools for genetic and epigenetic alterations potentially leading to reprogramming of tumor cells, stroma and immune cells. RESULTS: We structured the study by three consecutive analytical modules, which include the multigene-based expression profiling in a cohort of patients with primary serous ovarian cancer using a self-created AID/APOBEC-associated gene signature, building up of multivariable survival models with high predictive accuracy and nomination of top-ranked candidate/target genes according to their prognostic impact, and systems biology-based reconstruction of the AID/APOBEC-driven disease-relevant mechanisms using transcriptomics data from ovarian cancer samples. We demonstrated that inclusion of the AID/APOBEC signature-based variables significantly improves the clinicopathological variables-based survival prognostication allowing significant patient stratification. Furthermore, several of the profiling-derived variables such as ID3, PTPRC/CD45, AID, APOBEC3G, and ID2 exceed the prognostic impact of some clinicopathological variables. We next extended the signature-/modeling-based knowledge by extracting top genes co-regulated with target molecules in ovarian cancer tissues and dissected potential networks/pathways/regulators contributing to pathomechanisms. We thereby revealed that the AID/APOBEC-related network in ovarian cancer is particularly associated with remodeling/fibrotic pathways, altered immune response, and autoimmune disorders with inflammatory background. CONCLUSIONS: The herein study is, to our knowledge, the first one linking expression of entire AID/APOBECs and interacting genes with clinical outcome with respect to survival of cancer patients. Overall, data propose a novel AID/APOBEC-derived survival model for patient risk assessment and reconstitute mapping to molecular pathways. The established study algorithm can be applied further for any biologically relevant signature and any type of diseased tissue.


Subject(s)
APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Signal Transduction , Adult , Aged , Aged, 80 and over , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Combined Modality Therapy , Computational Biology/methods , Datasets as Topic , Female , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Middle Aged , Molecular Sequence Annotation , Multigene Family , Neoplasm Grading , Neoplasm Staging , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/metabolism , Ovarian Neoplasms/mortality , Ovarian Neoplasms/therapy , Prognosis , Proportional Hazards Models
16.
Oncotarget ; 7(16): 22295-323, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26967245

ABSTRACT

The epithelial to mesenchymal transition (EMT) program is activated in epithelial cancer cells and facilitates their ability to metastasize based on enhanced migratory, proliferative, anti-apoptotic, and pluripotent capacities. Given the fundamental impact of sphingolipid machinery to each individual process, the sphingolipid-related mechanisms might be considered among the most prominent drivers/players of EMT; yet, there is still limited knowledge. Given the complexity of the interconnected sphingolipid system, which includes distinct sphingolipid mediators, their synthesizing enzymes, receptors and transporters, we herein apply an integrative approach for assessment of the sphingolipid-associated mechanisms underlying EMT program. We created the sphingolipid-/EMT-relevant 41-gene/23-gene signatures which were applied to denote transcriptional events in a lung cancer cell-based EMT model. Based on defined 35-gene sphingolipid/EMT-attributed signature of regulated genes, we show close associations between EMT markers, genes comprising the sphingolipid network at multiple levels and encoding sphingosine 1-phosphate (S1P)-/ceramide-metabolizing enzymes, S1P and lysophosphatidic acid (LPA) receptors and S1P transporters, pluripotency genes and inflammation-related molecules, and demonstrate the underlying biological pathways and regulators. Mass spectrometry-based sphingolipid analysis revealed an EMT-attributed shift towards increased S1P and LPA accompanied by reduced ceramide levels. Notably, using transcriptomics data across various cell-based perturbations and neoplastic tissues (24193 arrays), we identified the sphingolipid/EMT signature primarily in lung adenocarcinoma tissues; besides, bladder, colorectal and prostate cancers were among the top-ranked. The findings also highlight novel regulatory associations between influenza virus and the sphingolipid/EMT-associated mechanisms. In sum, data propose the multidimensional contribution of sphingolipid machinery to pathological EMT and may yield new biomarkers and therapeutic targets.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Neoplasms/pathology , Sphingolipids/metabolism , Cell Line, Tumor , Gene Regulatory Networks , Humans , Lipid Metabolism , Neoplasms/metabolism , Sphingolipids/genetics , Transcriptome
17.
Gerontology ; 62(2): 128-37, 2016.
Article in English | MEDLINE | ID: mdl-26088283

ABSTRACT

Osteoporosis is a major cause of fractures and associated morbidity in the aged population. The pathogenesis of osteoporosis is multifactorial; whereas traditional pathophysiological concepts emphasize endocrine mechanisms, it has been recognized that also components of the immune system have a significant impact on bone. Since 2000, when the term 'osteoimmunology' was coined, novel insights into the role of inflammatory cytokines by influencing the fine-tuned balance between bone resorption and bone formation have helped to explain the occurrence of osteoporosis in conjunction with chronic inflammatory reactions. Moreover, the phenomenon of a low-grade, chronic, systemic inflammatory state associated with aging has been defined as 'inflamm-aging' by Claudio Franceschi and has been linked to age-related diseases such as osteoporosis. Given the tight anatomical and physiological coexistence of B cells and the bone-forming units in the bone marrow, a role of B cells in osteoimmunological interactions has long been suspected. Recent findings of B cells as active regulators of the RANK/RANKL/OPG axis, of altered RANKL/OPG production by B cells in HIV-associated bone loss or of a modulated expression of genes linked to B-cell biology in response to estrogen deficiency support this assumption. Furthermore, oxidative stress and the generation of advanced glycation end products have emerged as links between inflammation and bone destruction.


Subject(s)
B-Lymphocytes/immunology , Osteoporosis/immunology , Osteoprotegerin/immunology , RANK Ligand/immunology , Receptor Activator of Nuclear Factor-kappa B/immunology , Cytidine Deaminase/immunology , Glycation End Products, Advanced/immunology , Humans , Inflammation/immunology , Oxidative Stress/immunology
18.
Mol Cancer ; 14: 61, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25879211

ABSTRACT

BACKGROUND: The calcium sensing receptor (CaSR), a calcium-binding G protein-coupled receptor is expressed also in tissues not directly involved in calcium homeostasis like the colon. We have previously reported that CaSR expression is down-regulated in colorectal cancer (CRC) and that loss of CaSR provides growth advantage to transformed cells. However, detailed mechanisms underlying these processes are largely unknown. METHODS AND RESULTS: In a cohort of 111 CRC patients, we found significant inverse correlation between CaSR expression and markers of epithelial-to-mesenchymal transition (EMT), a process involved in tumor development in CRC. The colon of CaSR/PTH double-knockout, as well as the intestine-specific CaSR knockout mice showed significantly increased expression of markers involved in the EMT process. In vitro, stable expression of the CaSR (HT29(CaSR)) gave a more epithelial-like morphology to HT29 colon cancer cells with increased levels of E-Cadherin compared with control cells (HT29(EMP)). The HT29(CaSR) cells had reduced invasive potential, which was attributed to the inhibition of the Wnt/ß-catenin pathway as measured by a decrease in nuclear translocation of ß-catenin and transcriptional regulation of genes like GSK-3ß and Cyclin D1. Expression of a spectrum of different mesenchymal markers was significantly down-regulated in HT29(CaSR) cells. The CaSR was able to block upregulation of mesenchymal markers even in an EMT-inducing environment. Moreover, overexpression of the CaSR led to down-regulation of stem cell-like phenotype. CONCLUSIONS: The results from this study demonstrate that the CaSR inhibits epithelial-to-mesenchymal transition and the acquisition of a stem cell-like phenotype in the colon of mice lacking the CaSR as well as colorectal cancer cells, identifying the CaSR as a key molecule in preventing tumor progression. Our results support the rationale to develop new strategies either preventing CaSR loss or reversing its silencing.


Subject(s)
Colon/metabolism , Epithelial-Mesenchymal Transition/genetics , Receptors, Calcium-Sensing/genetics , Stem Cells/metabolism , Animals , Cadherins/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , Cyclin D1/genetics , Down-Regulation/genetics , Epithelial-Mesenchymal Transition/physiology , Gene Expression Regulation, Neoplastic/genetics , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , HT29 Cells , Humans , Mice , Mice, Knockout , Phenotype , Transcription, Genetic/genetics , Up-Regulation/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics
20.
Mol Cancer Ther ; 14(3): 757-68, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25612618

ABSTRACT

The FDA-approved BRAF inhibitor vemurafenib achieves outstanding clinical response rates in patients with melanoma, but early resistance is common. Understanding the pathologic mechanisms of drug resistance and identification of effective therapeutic alternatives are key scientific challenges in the melanoma setting. Using proteomic techniques, including shotgun analysis and 2D-gel electrophoresis, we identified a comprehensive signature of the vemurafenib-resistant M24met in comparison with the vemurafenib-sensitive A375 melanoma cell line. The resistant cells were characterized by loss of differentiation, induction of transformation, enhanced expression of the lysosomal compartment, increased potential for metastasis, migration, adherence and Ca2(+) ion binding, enhanced expression of the MAPK pathway and extracellular matrix proteins, and epithelial-mesenchymal transformation. The main features were verified by shotgun analysis with QEXACTIVE orbitrap MS, electron microscopy, lysosomal staining, Western blotting, and adherence assay in a VM-1 melanoma cell line with acquired vemurafenib resistance. On the basis of the resistance profile, we were able to successfully predict that a novel resveratrol-derived COX-2 inhibitor, M8, would be active against the vemurafenib-resistant but not the vemurafenib-sensitive melanoma cells. Using high-throughput methods for cell line and drug characterization may thus offer a new way to identify key features of vemurafenib resistance, facilitating the design of effective rational therapeutic alternatives.


Subject(s)
Drug Resistance, Neoplasm/genetics , Indoles/pharmacology , Indoles/therapeutic use , Proteome/genetics , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Female , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Melanoma/drug therapy , Melanoma/genetics , Proteomics/methods , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Vemurafenib , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...