Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542361

ABSTRACT

Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes raise the possibility of generating pluripotent stem cells from a wide range of human diseases. In the cardiology field, hiPSCs have been used to address the mechanistic bases of primary arrhythmias and in investigations of drug safety. These studies have been focused primarily on atrial and ventricular pathologies. Consequently, many hiPSC-based cardiac differentiation protocols have been developed to differentiate between atrial- or ventricular-like cardiomyocytes. Few protocols have successfully proposed ways to obtain hiPSC-derived cardiac pacemaker cells, despite the very limited availability of human tissues from the sinoatrial node. Providing an in vitro source of pacemaker-like cells would be of paramount importance in terms of furthering our understanding of the mechanisms underlying sinoatrial node pathophysiology and testing innovative clinical strategies against sinoatrial node dysfunction (i.e., biological pacemakers and genetic- and pharmacological- based therapy). Here, we summarize and detail the currently available protocols used to obtain patient-derived pacemaker-like cells.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Myocytes, Cardiac , Cell Differentiation/physiology , Sinoatrial Node
2.
Circ Res ; 134(10): 1306-1326, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38533639

ABSTRACT

BACKGROUND: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.


Subject(s)
Circadian Rhythm , Myocytes, Cardiac , Receptors, Glucocorticoid , Animals , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Mice , Myocytes, Cardiac/metabolism , Male , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/genetics , Mice, Inbred C57BL , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Connexin 43/metabolism , Connexin 43/genetics , Mice, Knockout , Action Potentials
3.
Heart Rhythm ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38428449

ABSTRACT

Bradyarrhythmias including sinus bradycardia and atrioventricular (AV) block are frequently encountered in endurance athletes especially at night. While these are well tolerated by the young athlete, there is evidence that generally from the fifth decade of life onward, such arrhythmias can degenerate into pathological symptomatic bradycardia requiring pacemaker therapy. For many years, athletic bradycardia and AV block have been attributed to high vagal tone, but work from our group has questioned this widely held assumption and demonstrated a role for intrinsic electrophysiological remodeling of the sinus node and the AV node. In this article, we argue that bradyarrhythmias in the veteran athlete arise from the cumulative effects of exercise training, the circadian rhythm and aging on the electrical activity of the nodes. We consider contemporary strategies for the treatment of symptomatic bradyarrhythmias in athletes and highlight potential therapies resulting from our evolving mechanistic understanding of this phenomenon.

4.
Nat Commun ; 15(1): 54, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167790

ABSTRACT

L-type voltage-gated calcium channels are involved in multiple physiological functions. Currently available antagonists do not discriminate between L-type channel isoforms. Importantly, no selective blocker is available to dissect the role of L-type isoforms Cav1.2 and Cav1.3 that are concomitantly co-expressed in the heart, neuroendocrine and neuronal cells. Here we show that calciseptine, a snake toxin purified from mamba venom, selectively blocks Cav1.2 -mediated L-type calcium currents (ICaL) at concentrations leaving Cav1.3-mediated ICaL unaffected in both native cardiac myocytes and HEK-293T cells expressing recombinant Cav1.2 and Cav1.3 channels. Functionally, calciseptine potently inhibits cardiac contraction without altering the pacemaker activity in sino-atrial node cells, underscoring differential roles of Cav1.2- and Cav1.3 in cardiac contractility and automaticity. In summary, calciseptine is a selective L-type Cav1.2 Ca2+ channel blocker and should be a valuable tool to dissect the role of these L-channel isoforms.


Subject(s)
Calcium Channels, L-Type , Dendroaspis , Animals , Calcium Channels, L-Type/physiology , Dendroaspis/metabolism , Myocytes, Cardiac/metabolism , Protein Isoforms , Calcium/metabolism
5.
Front Cardiovasc Med ; 10: 1134503, 2023.
Article in English | MEDLINE | ID: mdl-37593151

ABSTRACT

Background: Acute myocardial infarction (AMI) is the major cause of cardiovascular mortality worldwide. Most ischemic episodes are triggered by an increase in heart rate, which induces an imbalance between myocardial oxygen delivery and consumption. Developing drugs that selectively reduce heart rate by inhibiting ion channels involved in heart rate control could provide more clinical benefits. The Cav1.3-mediated L-type Ca2+ current (ICav1.3) play important roles in the generation of heart rate. Therefore, they can constitute relevant targets for selective control of heart rate and cardioprotection during AMI. Objective: We aimed to investigate the relationship between heart rate and infarct size using mouse strains knockout for Cav1.3 (Cav1.3-/-) L-type calcium channel and of the cardiac G protein gated potassium channel (Girk4-/-) in association with the funny (f)-channel inhibitor ivabradine. Methods: Wild-type (WT), Cav1.3+/-, Cav1.3-/- and Girk4-/- mice were used as models of respectively normal heart rate, moderate heart rate reduction, bradycardia, and mild tachycardia, respectively. Mice underwent a surgical protocol of myocardial IR (40 min ischemia and 60 min reperfusion). Heart rate was recorded by one-lead surface ECG recording, and infarct size measured by triphenyl tetrazolium chloride staining. In addition, Cav1.3-/- and WT hearts perfused on a Langendorff system were subjected to the same ischemia-reperfusion protocol ex vivo, without or with atrial pacing, and the coronary flow was recorded. Results: Cav1.3-/- mice presented reduced infarct size (-29%), while Girk4-/- displayed increased infarct size (+30%) compared to WT mice. Consistently, heart rate reduction in Cav1.3+/- or by the f-channel blocker ivabradine was associated with significant decrease in infarct size (-27% and -32%, respectively) in comparison to WT mice. Conclusion: Our results show that decreasing heart rate allows to protect the myocardium against IR injury in vivo and reveal a close relationship between basal heart rate and IR injury. In addition, this study suggests that targeting Cav1.3 channels could constitute a relevant target for reducing infarct size, since maximal heart rate dependent cardioprotective effect is already observed in Cav1.3+/- mice.

7.
Proc Natl Acad Sci U S A ; 120(28): e2210152120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37406102

ABSTRACT

Sepsis has emerged as a global health burden associated with multiple organ dysfunction and 20% mortality rate in patients. Numerous clinical studies over the past two decades have correlated the disease severity and mortality in septic patients with impaired heart rate variability (HRV), as a consequence of impaired chronotropic response of sinoatrial node (SAN) pacemaker activity to vagal/parasympathetic stimulation. However, the molecular mechanism(s) downstream to parasympathetic inputs have not been investigated yet in sepsis, particularly in the SAN. Based on electrocardiography, fluorescence Ca2+ imaging, electrophysiology, and protein assays from organ to subcellular level, we report that impaired muscarinic receptor subtype 2-G protein-activated inwardly-rectifying potassium channel (M2R-GIRK) signaling in a lipopolysaccharide-induced proxy septic mouse model plays a critical role in SAN pacemaking and HRV. The parasympathetic responses to a muscarinic agonist, namely IKACh activation in SAN cells, reduction in Ca2+ mobilization of SAN tissues, lowering of heart rate and increase in HRV, were profoundly attenuated upon lipopolysaccharide-induced sepsis. These functional alterations manifested as a direct consequence of reduced expression of key ion-channel components (GIRK1, GIRK4, and M2R) in the mouse SAN tissues and cells, which was further evident in the human right atrial appendages of septic patients and likely not mediated by the common proinflammatory cytokines elevated in sepsis.


Subject(s)
Lipopolysaccharides , Sepsis , Humans , Animals , Mice , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Sinoatrial Node/physiology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Signal Transduction/physiology , Sepsis/chemically induced , Sepsis/metabolism
8.
Sci Rep ; 13(1): 3054, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810863

ABSTRACT

Microcebus murinus, or gray mouse lemur (GML), is one of the smallest primates known, with a size in between mice and rats. The small size, genetic proximity to humans and prolonged senescence, make this lemur an emerging model for neurodegenerative diseases. For the same reasons, it could help understand how aging affects cardiac activity. Here, we provide the first characterization of sinoatrial (SAN) pacemaker activity and of the effect of aging on GML heart rate (HR). According to GML size, its heartbeat and intrinsic pacemaker frequencies lie in between those of mice and rats. To sustain this fast automaticity the GML SAN expresses funny and Ca2+ currents (If, ICa,L and ICa,T) at densities similar to that of small rodents. SAN automaticity was also responsive to ß-adrenergic and cholinergic pharmacological stimulation, showing a consequent shift in the localization of the origin of pacemaker activity. We found that aging causes decrease of basal HR and atrial remodeling in GML. We also estimated that, over 12 years of a lifetime, GML generates about 3 billion heartbeats, thus, as many as humans and three times more than rodents of equivalent size. In addition, we estimated that the high number of heartbeats per lifetime is a characteristic that distinguishes primates from rodents or other eutherian mammals, independently from body size. Thus, cardiac endurance could contribute to the exceptional longevity of GML and other primates, suggesting that GML's heart sustains a workload comparable to that of humans in a lifetime. In conclusion, despite the fast HR, GML replicates some of the cardiac deficiencies reported in old people, providing a suitable model to study heart rhythm impairment in aging. Moreover, we estimated that, along with humans and other primates, GML presents a remarkable cardiac longevity, enabling longer life span than other mammals of equivalent size.


Subject(s)
Cheirogaleidae , Humans , Rats , Animals , Longevity , Aging/physiology , Heart , Heart Rate/physiology , Mammals
10.
Cells ; 11(7)2022 03 25.
Article in English | MEDLINE | ID: mdl-35406677

ABSTRACT

BACKGROUND: Sinoatrial node cells (SANC) automaticity is generated by functional association between the activity of plasmalemmal ion channels and local diastolic intracellular Ca2+ release (LCR) from ryanodine receptors. Strikingly, most isolated SANC exhibit a "dormant" state, whereas only a fraction shows regular firing as observed in intact SAN. Recent studies showed that ß-adrenergic stimulation can initiate spontaneous firing in dormant SANC, though this mechanism is not entirely understood. METHODS: To investigate the role of L-type Cav1.3 Ca2+ channels in the adrenergic regulation of automaticity in dormant SANC, we used a knock-in mouse strain in which the sensitivity of L-type Cav1.2 α1 subunits to dihydropyridines (DHPs) was inactivated (Cav1.2DHP-/-), enabling the selective pharmacological inhibition of Cav1.3 by DHPs. RESULTS: In dormant SANC, ß-adrenergic stimulation with isoproterenol (ISO) induced spontaneous action potentials (AP) and Ca2+ transients, which were completely arrested with concomitant perfusion of the DHP nifedipine. In spontaneously firing SANC at baseline, Cav1.3 inhibition completely reversed the effect of ß-adrenergic stimulation on AP and the frequency of Ca2+ transients. Confocal calcium imaging of SANC showed that the ß-adrenergic-induced synchronization of LCRs is regulated by the activity of Cav1.3 channels. CONCLUSIONS: Our study shows a novel role of Cav1.3 channels in initiating and maintaining automaticity in dormant SANC upon ß-adrenergic stimulation.


Subject(s)
Adrenergic Agents , Sinoatrial Node , Adrenergic Agents/pharmacology , Animals , Calcium/metabolism , Mice , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel , Sinoatrial Node/metabolism
11.
Front Cardiovasc Med ; 8: 662410, 2021.
Article in English | MEDLINE | ID: mdl-34434970

ABSTRACT

The understanding of the electrophysiological mechanisms that underlie mechanosensitivity of the sinoatrial node (SAN), the primary pacemaker of the heart, has been evolving over the past century. The heart is constantly exposed to a dynamic mechanical environment; as such, the SAN has numerous canonical and emerging mechanosensitive ion channels and signaling pathways that govern its ability to respond to both fast (within second or on beat-to-beat manner) and slow (minutes) timescales. This review summarizes the effects of mechanical loading on the SAN activity and reviews putative candidates, including fast mechanoactivated channels (Piezo, TREK, and BK) and slow mechanoresponsive ion channels [including volume-regulated chloride channels and transient receptor potential (TRP)], as well as the components of mechanochemical signal transduction, which may contribute to SAN mechanosensitivity. Furthermore, we examine the structural foundation for both mechano-electrical and mechanochemical signal transduction and discuss the role of specialized membrane nanodomains, namely, caveolae, in mechanical regulation of both membrane and calcium clock components of the so-called coupled-clock pacemaker system responsible for SAN automaticity. Finally, we emphasize how these mechanically activated changes contribute to the pathophysiology of SAN dysfunction and discuss controversial areas necessitating future investigations. Though the exact mechanisms of SAN mechanosensitivity are currently unknown, identification of such components, their impact into SAN pacemaking, and pathological remodeling may provide new therapeutic targets for the treatment of SAN dysfunction and associated rhythm abnormalities.

12.
Prog Biophys Mol Biol ; 166: 61-85, 2021 11.
Article in English | MEDLINE | ID: mdl-34197836

ABSTRACT

The funny current, If, was first recorded in the heart 40 or more years ago by Dario DiFrancesco and others. Since then, we have learnt that If plays an important role in pacemaking in the sinus node, the innate pacemaker of the heart, and more recently evidence has accumulated to show that If may play an important role in action potential conduction through the atrioventricular (AV) node. Evidence has also accumulated to show that regulation of the transcription and translation of the underlying Hcn genes plays an important role in the regulation of sinus node pacemaking and AV node conduction under normal physiological conditions - in athletes, during the circadian rhythm, in pregnancy, and during postnatal development - as well as pathological states - ageing, heart failure, pulmonary hypertension, diabetes and atrial fibrillation. There may be yet more pathological conditions involving changes in the expression of the Hcn genes. Here, we review the role of If and the underlying HCN channels in physiological and pathological changes of the sinus and AV nodes and we begin to explore the signalling pathways (microRNAs, transcription factors, GIRK4, the autonomic nervous system and inflammation) involved in this regulation. This review is dedicated to Dario DiFrancesco on his retirement.


Subject(s)
Atrial Fibrillation , Atrioventricular Node , Action Potentials , Heart Rate , Humans , Sinoatrial Node
13.
Prog Biophys Mol Biol ; 166: 39-50, 2021 11.
Article in English | MEDLINE | ID: mdl-34129872

ABSTRACT

Since its first description in 1979, the hyperpolarization-activated funny current (If) has been the object of intensive research aimed at understanding its role in cardiac pacemaker activity and its modulation by the sympathetic and parasympathetic branches of the autonomic nervous system. If was described in isolated tissue strips of the rabbit sinoatrial node using the double-electrode voltage-clamp technique. Since then, the rabbit has been the principal animal model for studying pacemaker activity and If for more than 20 years. In 2001, the first study describing the electrophysiological properties of mouse sinoatrial pacemaker myocytes and those of If was published. It was soon followed by the description of murine myocytes of the atrioventricular node and the Purkinje fibres. The sinoatrial node of genetically modified mice has become a very popular model for studying the mechanisms of cardiac pacemaker activity. This field of research benefits from the impressive advancement of in-vivo exploration techniques of physiological parameters, imaging, genetics, and large-scale genomic approaches. The present review discusses the influence of mouse genetic on the most recent knowledge of the funny current's role in the physiology and pathophysiology of cardiac pacemaker activity. Genetically modified mice have provided important insights into the role of If in determining intrinsic automaticity in vivo and in myocytes of the conduction system. In addition, gene targeting of f-(HCN) channel isoforms have contributed to elucidating the current's role in the regulation of heart rate by the parasympathetic nervous system. This review is dedicated to Dario DiFrancesco on his retirement.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Sinoatrial Node , Animals , Electrophysiological Phenomena , Heart Rate , Mice , Patch-Clamp Techniques , Rabbits
14.
Front Genet ; 12: 654925, 2021.
Article in English | MEDLINE | ID: mdl-33868385

ABSTRACT

The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.

16.
Heart Rhythm ; 18(5): 801-810, 2021 05.
Article in English | MEDLINE | ID: mdl-33278629

ABSTRACT

BACKGROUND: Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night. OBJECTIVE: The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved. METHODS: In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used. RESULTS: The day-night difference in the average heart rate of mice was independent of fluctuations in average locomotor activity and persisted under pharmacological, surgical, and transgenic interruption of autonomic input to the heart. Spontaneous beating rate of isolated (ie, denervated) sinus node (SN) preparations exhibited a day-night rhythm concomitant with rhythmic messenger RNA expression of ion channels including hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4). In vitro studies demonstrated 24-hour rhythms in the human HCN4 promoter and the corresponding funny current. The day-night heart rate difference in mice was abolished by HCN block, both in vivo and in the isolated SN. Rhythmic expression of canonical circadian clock transcription factors, for example, Brain and muscle ARNT-Like 1 (BMAL1) and Cryptochrome (CRY) was identified in the SN and disruption of the local clock (by cardiomyocyte-specific knockout of Bmal1) abolished the day-night difference in Hcn4 and intrinsic heart rate. Chromatin immunoprecipitation revealed specific BMAL1 binding sites on Hcn4, linking the local clock with intrinsic rate control. CONCLUSION: The circadian variation in heart rate involves SN local clock-dependent Hcn4 rhythmicity. Data reveal a novel regulator of heart rate and mechanistic insight into bradycardia during sleep.


Subject(s)
Bradycardia/genetics , Circadian Clocks/physiology , Electrocardiography/methods , Gene Expression Regulation , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , RNA/genetics , Sinoatrial Node/physiopathology , Animals , Bradycardia/metabolism , Bradycardia/physiopathology , Disease Models, Animal , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/biosynthesis , Mice
17.
Annu Rev Pharmacol Toxicol ; 61: 757-778, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33017571

ABSTRACT

The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.


Subject(s)
Sick Sinus Syndrome , Sinoatrial Node , Heart Conduction System , Humans
18.
Sci Rep ; 10(1): 18906, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144668

ABSTRACT

Cardiac automaticity is set by pacemaker activity of the sinus node (SAN). In addition to the ubiquitously expressed cardiac voltage-gated L-type Cav1.2 Ca2+ channel isoform, pacemaker cells within the SAN and the atrioventricular node co-express voltage-gated L-type Cav1.3 and T-type Cav3.1 Ca2+ channels (SAN-VGCCs). The role of SAN-VGCCs in automaticity is incompletely understood. We used knockout mice carrying individual genetic ablation of Cav1.3 (Cav1.3-/-) or Cav3.1 (Cav3.1-/-) channels and double mutant Cav1.3-/-/Cav3.1-/- mice expressing only Cav1.2 channels. We show that concomitant loss of SAN-VGCCs prevents physiological SAN automaticity, blocks impulse conduction and compromises ventricular rhythmicity. Coexpression of SAN-VGCCs is necessary for impulse formation in the central SAN. In mice lacking SAN-VGCCs, residual pacemaker activity is predominantly generated in peripheral nodal and extranodal sites by f-channels and TTX-sensitive Na+ channels. In beating SAN cells, ablation of SAN-VGCCs disrupted late diastolic local intracellular Ca2+ release, which demonstrates an important role for these channels in supporting the sarcoplasmic reticulum based "Ca2+ clock" mechanism during normal pacemaking. These data implicate an underappreciated role for co-expression of SAN-VGCCs in heart automaticity and define an integral role for these channels in mechanisms that control the heartbeat.


Subject(s)
Atrioventricular Node/physiopathology , Bradycardia/diagnosis , Calcium Channels, L-Type/genetics , Calcium Channels, T-Type/genetics , Sinoatrial Node/physiopathology , Animals , Bradycardia/genetics , Bradycardia/physiopathology , Calcium/metabolism , Disease Models, Animal , Electrocardiography , Heart Rate , Mice , Mice, Knockout , Sarcoplasmic Reticulum/metabolism
19.
Biochem J ; 477(20): 3985-3999, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33034621

ABSTRACT

Ryanodine receptors are responsible for the massive release of calcium from the sarcoplasmic reticulum that triggers heart muscle contraction. Maurocalcin (MCa) is a 33 amino acid peptide toxin known to target skeletal ryanodine receptor. We investigated the effect of MCa and its analog MCaE12A on isolated cardiac ryanodine receptor (RyR2), and showed that they increase RyR2 sensitivity to cytoplasmic calcium concentrations promoting channel opening and decreases its sensitivity to inhibiting calcium concentrations. By measuring intracellular Ca2+ transients, calcium sparks and contraction on cardiomyocytes isolated from adult rats or differentiated from human-induced pluripotent stem cells, we demonstrated that MCaE12A passively penetrates cardiomyocytes and promotes the abnormal opening of RyR2. We also investigated the effect of MCaE12A on the pacemaker activity of sinus node cells from different mice lines and showed that, MCaE12A improves pacemaker activity of sinus node cells obtained from mice lacking L-type Cav1.3 channel, or following selective pharmacologic inhibition of calcium influx via Cav1.3. Our results identify MCaE12A as a high-affinity modulator of RyR2 and make it an important tool for RyR2 structure-to-function studies as well as for manipulating Ca2+ homeostasis and dynamic of cardiac cells.


Subject(s)
Calcium/metabolism , Myocytes, Cardiac/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Scorpion Venoms/pharmacology , Sinoatrial Node/drug effects , Action Potentials/drug effects , Animals , Calcium Signaling/drug effects , Cytoplasm/drug effects , Cytoplasm/metabolism , Homeostasis , Humans , Male , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells , Rats , Rats, Wistar , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Scorpion Venoms/chemistry , Sinoatrial Node/cytology , Sinoatrial Node/physiology , Swine
20.
Pflugers Arch ; 472(8): 1103-1104, 2020 08.
Article in English | MEDLINE | ID: mdl-32648124

ABSTRACT

The above article was published online with an error in Fig. 1b. There is a doubled action potential at the far right of the left panel of the figure.

SELECTION OF CITATIONS
SEARCH DETAIL
...