Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 11: 131, 2017.
Article in English | MEDLINE | ID: mdl-28386224

ABSTRACT

Neurofeedback based on real-time functional magnetic resonance imaging (fMRI) is an emerging technique that allows for learning voluntary control over brain activity. Such brain training has been shown to cause specific behavioral or cognitive enhancements, and even therapeutic effects in neurological and psychiatric patient populations. However, for clinical applications it is important to know if learned self-regulation can be maintained over longer periods of time and whether it transfers to situations without neurofeedback. Here, we present preliminary results from five healthy participants who successfully learned to control their visual cortex activity and who we re-scanned 6 and 14 months after the initial neurofeedback training to perform learned self-regulation. We found that participants achieved levels of self-regulation that were similar to those achieved at the end of the successful initial training, and this without further neurofeedback information. Our results demonstrate that learned self-regulation can be maintained over longer periods of time and causes lasting transfer effects. They thus support the notion that neurofeedback is a promising therapeutic approach whose effects can last far beyond the actual training period.

2.
Cereb Cortex ; 27(2): 1193-1202, 2017 02 01.
Article in English | MEDLINE | ID: mdl-26679192

ABSTRACT

Most mental functions are associated with dynamic interactions within functional brain networks. Thus, training individuals to alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions. Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After training, participants successfully self-regulated the top-down connectivity between these brain areas even without neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders.


Subject(s)
Emotions/physiology , Learning/physiology , Nerve Net/physiology , Neurofeedback , Adult , Amygdala/physiology , Behavior , Cognition/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Neural Pathways/physiology , Neuropsychological Tests , Photic Stimulation , Prefrontal Cortex/physiology
3.
PLoS One ; 11(6): e0156882, 2016.
Article in English | MEDLINE | ID: mdl-27359335

ABSTRACT

INTRODUCTION: Attaining an accurate diagnosis in the acute phase for severely brain-damaged patients presenting Disorders of Consciousness (DOC) is crucial for prognostic validity; such a diagnosis determines further medical management, in terms of therapeutic choices and end-of-life decisions. However, DOC evaluation based on validated scales, such as the Revised Coma Recovery Scale (CRS-R), can lead to an underestimation of consciousness and to frequent misdiagnoses particularly in cases of cognitive motor dissociation due to other aetiologies. The purpose of this study is to determine the clinical signs that lead to a more accurate consciousness assessment allowing more reliable outcome prediction. METHODS: From the Unit of Acute Neurorehabilitation (University Hospital, Lausanne, Switzerland) between 2011 and 2014, we enrolled 33 DOC patients with a DOC diagnosis according to the CRS-R that had been established within 28 days of brain damage. The first CRS-R assessment established the initial diagnosis of Unresponsive Wakefulness Syndrome (UWS) in 20 patients and a Minimally Consciousness State (MCS) in the remaining13 patients. We clinically evaluated the patients over time using the CRS-R scale and concurrently from the beginning with complementary clinical items of a new observational Motor Behaviour Tool (MBT). Primary endpoint was outcome at unit discharge distinguishing two main classes of patients (DOC patients having emerged from DOC and those remaining in DOC) and 6 subclasses detailing the outcome of UWS and MCS patients, respectively. Based on CRS-R and MBT scores assessed separately and jointly, statistical testing was performed in the acute phase using a non-parametric Mann-Whitney U test; longitudinal CRS-R data were modelled with a Generalized Linear Model. RESULTS: Fifty-five per cent of the UWS patients and 77% of the MCS patients had emerged from DOC. First, statistical prediction of the first CRS-R scores did not permit outcome differentiation between classes; longitudinal regression modelling of the CRS-R data identified distinct outcome evolution, but not earlier than 19 days. Second, the MBT yielded a significant outcome predictability in the acute phase (p<0.02, sensitivity>0.81). Third, a statistical comparison of the CRS-R subscales weighted by MBT became significantly predictive for DOC outcome (p<0.02). DISCUSSION: The association of MBT and CRS-R scoring improves significantly the evaluation of consciousness and the predictability of outcome in the acute phase. Subtle motor behaviour assessment provides accurate insight into the amount and the content of consciousness even in the case of cognitive motor dissociation.


Subject(s)
Consciousness Disorders/diagnosis , Recovery of Function/physiology , Adolescent , Adult , Aged , Consciousness Disorders/physiopathology , Consciousness Disorders/rehabilitation , Female , Humans , Male , Middle Aged , Physical Examination , Prognosis , Treatment Outcome , Young Adult
4.
Neurology ; 79(1): 39-46, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22722626

ABSTRACT

OBJECTIVES: In this study, we investigated the structural plasticity of the contralesional motor network in ischemic stroke patients using diffusion magnetic resonance imaging (MRI) and explored a model that combines a MRI-based metric of contralesional network integrity and clinical data to predict functional outcome at 6 months after stroke. METHODS: MRI and clinical examinations were performed in 12 patients in the acute phase, at 1 and 6 months after stroke. Twelve age- and gender-matched controls underwent 2 MRIs 1 month apart. Structural remodeling after stroke was assessed using diffusion MRI with an automated measurement of generalized fractional anisotropy (GFA), which was calculated along connections between contralesional cortical motor areas. The predictive model of poststroke functional outcome was computed using a linear regression of acute GFA measures and the clinical assessment. RESULTS: GFA changes in the contralesional motor tracts were found in all patients and differed significantly from controls (0.001 ≤ p < 0.05). GFA changes in intrahemispheric and interhemispheric motor tracts correlated with age (p ≤ 0.01); those in intrahemispheric motor tracts correlated strongly with clinical scores and stroke sizes (p ≤ 0.001). GFA measured in the acute phase together with a routine motor score and age were a strong predictor of motor outcome at 6 months (r(2) = 0.96, p = 0.0002). CONCLUSION: These findings represent a proof of principle that contralesional diffusion MRI measures may provide reliable information for personalized rehabilitation planning after ischemic motor stroke.


Subject(s)
Automation, Laboratory , Diffusion Magnetic Resonance Imaging/trends , Motor Skills/physiology , Recovery of Function/physiology , Stroke/diagnosis , Stroke/metabolism , Adult , Aged , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Stroke/physiopathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...