Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(1): 105529, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043796

ABSTRACT

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.


Subject(s)
Bacterial Proteins , Clostridioides difficile , Peptidoglycan , Peptidyl Transferases , Bacterial Proteins/chemistry , beta-Lactam Resistance , beta-Lactams/pharmacology , Catalysis , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Peptidoglycan/chemistry , Peptidyl Transferases/chemistry , Peptidyl Transferases/genetics
2.
J Biol Chem ; 300(1): 105494, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006948

ABSTRACT

Peptidoglycan is an essential component of the bacterial cell envelope that contains glycan chains substituted by short peptide stems. Peptide stems are polymerized by D,D-transpeptidases, which make bonds between the amino acid in position four of a donor stem and the third residue of an acceptor stem (4-3 cross-links). Some bacterial peptidoglycans also contain 3-3 cross-links that are formed by another class of enzymes called L,D-transpeptidases which contain a YkuD catalytic domain. In this work, we investigate the formation of unusual bacterial 1-3 peptidoglycan cross-links. We describe a version of the PGFinder software that can identify 1-3 cross-links and report the high-resolution peptidoglycan structure of Gluconobacter oxydans (a model organism within the Acetobacteraceae family). We reveal that G. oxydans peptidoglycan contains peptide stems made of a single alanine as well as several dipeptide stems with unusual amino acids at their C-terminus. Using a bioinformatics approach, we identified a G. oxydans mutant from a transposon library with a drastic reduction in 1-3 cross-links. Through complementation experiments in G. oxydans and recombinant protein production in a heterologous host, we identify an L,D-transpeptidase enzyme with a domain distantly related to the YkuD domain responsible for these non-canonical reactions. This work revisits the enzymatic capabilities of L,D-transpeptidases, a versatile family of enzymes that play a key role in bacterial peptidoglycan remodelling.


Subject(s)
Bacterial Proteins , Gluconobacter oxydans , Models, Molecular , Peptidoglycan , Peptidyl Transferases , Amino Acids/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain/genetics , Peptidoglycan/chemistry , Peptidoglycan/genetics , Peptidoglycan/metabolism , Peptidyl Transferases/chemistry , Peptidyl Transferases/genetics , Peptidyl Transferases/metabolism , Software , Gluconobacter oxydans/enzymology , Gluconobacter oxydans/genetics , Computational Biology , Genetic Complementation Test , Protein Structure, Tertiary
3.
Commun Biol ; 6(1): 428, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072531

ABSTRACT

Control of cell size and morphology is of paramount importance for bacterial fitness. In the opportunistic pathogen Enterococcus faecalis, the formation of diplococci and short cell chains facilitates innate immune evasion and dissemination in the host. Minimisation of cell chain size relies on the activity of a peptidoglycan hydrolase called AtlA, dedicated to septum cleavage. To prevent autolysis, AtlA activity is tightly controlled, both temporally and spatially. Here, we show that the restricted localization of AtlA at the septum occurs via an unexpected mechanism. We demonstrate that the C-terminal LysM domain that allows the enzyme to bind peptidoglycan is essential to target this enzyme to the septum inside the cell before its translocation across the membrane. We identify a membrane-bound cytoplasmic protein partner (called AdmA) involved in the recruitment of AtlA via its LysM domains. This work reveals a moonlighting role for LysM domains, and a mechanism evolved to restrict the subcellular localization of a potentially lethal autolysin to its site of action.


Subject(s)
Enterococcus faecalis , Peptidoglycan , Enterococcus faecalis/metabolism , Peptidoglycan/metabolism , Bacterial Proteins/metabolism , Cell Wall/metabolism , N-Acetylmuramoyl-L-alanine Amidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Cell Separation
4.
Biomol NMR Assign ; 16(2): 247-251, 2022 10.
Article in English | MEDLINE | ID: mdl-35665899

ABSTRACT

Enterococcus faecalis is a major causative agent of hospital acquired infections. The ability of E. faecalis to evade the host immune system is essential during pathogenesis, which has been shown to be dependent on the complete separation of daughter cells by peptidoglycan hydrolases. AtlE is a peptidoglycan hydrolase which is predicted to bind to the cell wall of E. faecalis, via six C-terminal repeat sequences. Here, we report the near complete assignment of one of these six repeats, as well as the predicted backbone structure and dynamics. This data will provide a platform for future NMR studies to explore the ligand recognition motif of AtlE and help to uncover its potential role in E. faecalis virulence.


Subject(s)
Enterococcus faecalis , N-Acetylmuramoyl-L-alanine Amidase , Bacterial Proteins/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Enterococcus faecalis/chemistry , Enterococcus faecalis/metabolism , Ligands , N-Acetylmuramoyl-L-alanine Amidase/analysis , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptidoglycan/analysis , Peptidoglycan/chemistry , Peptidoglycan/metabolism
5.
Nat Commun ; 13(1): 2041, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440121

ABSTRACT

Staphylococcus aureus frequently causes infections that are challenging to treat, leading to high rates of persistent and relapsing infection. Here, to understand how the host environment influences treatment outcomes, we study the impact of human serum on staphylococcal antibiotic susceptibility. We show that serum triggers a high degree of tolerance to the lipopeptide antibiotic daptomycin and several other classes of antibiotic. Serum-induced daptomycin tolerance is due to two independent mechanisms. Firstly, the host defence peptide LL-37 induces tolerance by triggering the staphylococcal GraRS two-component system, leading to increased peptidoglycan accumulation. Secondly, GraRS-independent increases in membrane cardiolipin abundance are required for full tolerance. When both mechanisms are blocked, S. aureus incubated in serum is as susceptible to daptomycin as when grown in laboratory media. Our work demonstrates that host factors can significantly modulate antibiotic susceptibility via diverse mechanisms, and combination therapy may provide a way to mitigate this.


Subject(s)
Daptomycin , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcus aureus
6.
J Biol Chem ; 298(5): 101915, 2022 05.
Article in English | MEDLINE | ID: mdl-35398351

ABSTRACT

The cleavage of septal peptidoglycan at the end of cell division facilitates the separation of the two daughter cells. The hydrolases involved in this process (called autolysins) are potentially lethal enzymes that can cause cell death; their activity, therefore, must be tightly controlled during cell growth. In Enterococcus faecalis, the N-acetylglucosaminidase AtlA plays a predominant role in cell separation. atlA mutants form long cell chains and are significantly less virulent in the zebrafish model of infection. The attenuated virulence of atlA mutants is underpinned by a limited dissemination of bacterial chains in the host organism and a more efficient uptake by phagocytes that clear the infection. AtlA has structural homologs in other important pathogens, such as Listeria monocytogenes and Salmonella typhimurium, and therefore represents an attractive model to design new inhibitors of bacterial pathogenesis. Here, we provide a 1.45 Å crystal structure of the E. faecalis AtlA catalytic domain that reveals a closed conformation of a conserved ß-hairpin and a complex network of hydrogen bonds that bring two catalytic residues to the ideal distance for an inverting mechanism. Based on the model of the AtlA-substrate complex, we identify key residues critical for substrate recognition and septum cleavage during bacterial growth. We propose that this work will provide useful information for the rational design of specific inhibitors targeting this enterococcal virulence factor and its orthologs in other pathogens.


Subject(s)
Acetylglucosaminidase , Enterococcus faecalis/enzymology , Acetylglucosaminidase/chemistry , Animals , Bacterial Proteins/metabolism , Enterococcus faecalis/metabolism , Peptidoglycan/metabolism , Zebrafish/metabolism
7.
Elife ; 102021 09 28.
Article in English | MEDLINE | ID: mdl-34579805

ABSTRACT

Many software solutions are available for proteomics and glycomics studies, but none are ideal for the structural analysis of peptidoglycan (PG), the essential and major component of bacterial cell envelopes. It icomprises glycan chains and peptide stems, both containing unusual amino acids and sugars. This has forced the field to rely on manual analysis approaches, which are time-consuming, labour-intensive, and prone to error. The lack of automated tools has hampered the ability to perform high-throughput analyses and prevented the adoption of a standard methodology. Here, we describe a novel tool called PGFinder for the analysis of PG structure and demonstrate that it represents a powerful tool to quantify PG fragments and discover novel structural features. Our analysis workflow, which relies on open-access tools, is a breakthrough towards a consistent and reproducible analysis of bacterial PGs. It represents a significant advance towards peptidoglycomics as a full-fledged discipline.


Subject(s)
Bacteria/chemistry , Peptidoglycan/chemistry , Carbohydrate Conformation , Datasets as Topic , Glycomics , Mass Spectrometry/methods , Peptidoglycan/biosynthesis , Reproducibility of Results , Software
8.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34281200

ABSTRACT

The best-characterized members of the M23 family are glycyl-glycine hydrolases, such as lysostaphin (Lss) from Staphylococcus simulans or LytM from Staphylococcus aureus. Recently, enzymes with broad specificities were reported, such as EnpACD from Enterococcus faecalis, that cleaves D,L peptide bond between the stem peptide and a cross-bridge. Previously, the activity of EnpACD was demonstrated only on isolated peptidoglycan fragments. Herein we report conditions in which EnpACD lyses bacterial cells live with very high efficiency demonstrating great bacteriolytic potential, though limited to a low ionic strength environment. We have solved the structure of the EnpACD H109A inactive variant and analyzed it in the context of related peptidoglycan hydrolases structures to reveal the bases for the specificity determination. All M23 structures share a very conserved ß-sheet core which constitutes the rigid bottom of the substrate-binding groove and active site, while variable loops create the walls of the deep and narrow binding cleft. A detailed analysis of the binding groove architecture, specificity of M23 enzymes and D,L peptidases demonstrates that the substrate groove, which is particularly deep and narrow, is accessible preferably for peptides composed of amino acids with short side chains or subsequent L and D-isomers. As a result, the bottom of the groove is involved in interactions with the main chain of the substrate while the side chains are protruding in one plane towards the groove opening. We concluded that the selectivity of the substrates is based on their conformations allowed only for polyglycine chains and alternating chirality of the amino acids.


Subject(s)
Endopeptidases/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Peptide Hydrolases/metabolism , Amino Acid Sequence , Bacterial Proteins/metabolism , Catalytic Domain , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , Peptidoglycan/metabolism , Prophages/genetics , Prophages/metabolism , Protein Binding , Staphylococcus/metabolism , Staphylococcus aureus/metabolism , Substrate Specificity
9.
Nat Microbiol ; 6(1): 19-26, 2021 01.
Article in English | MEDLINE | ID: mdl-33139883

ABSTRACT

Gram-negative bacteria have a cell envelope that comprises an outer membrane (OM), a peptidoglycan (PG) layer and an inner membrane (IM)1. The OM and PG are load-bearing, selectively permeable structures that are stabilized by cooperative interactions between IM and OM proteins2,3. In Escherichia coli, Braun's lipoprotein (Lpp) forms the only covalent tether between the OM and PG and is crucial for cell envelope stability4; however, most other Gram-negative bacteria lack Lpp so it has been assumed that alternative mechanisms of OM stabilization are present5. We used a glycoproteomic analysis of PG to show that ß-barrel OM proteins are covalently attached to PG in several Gram-negative species, including Coxiella burnetii, Agrobacterium tumefaciens and Legionella pneumophila. In C. burnetii, we found that four different types of covalent attachments occur between OM proteins and PG, with tethering of the ß-barrel OM protein BbpA becoming most abundant in the stationary phase and tethering of the lipoprotein LimB similar throughout the cell cycle. Using a genetic approach, we demonstrate that the cell cycle-dependent tethering of BbpA is partly dependent on a developmentally regulated L,D-transpeptidase (Ldt). We use our findings to propose a model of Gram-negative cell envelope stabilization that includes cell cycle control and an expanded role for Ldts in covalently attaching surface proteins to PG.


Subject(s)
Agrobacterium tumefaciens/metabolism , Bacterial Outer Membrane Proteins/metabolism , Coxiella burnetii/metabolism , Escherichia coli/metabolism , Legionella pneumophila/metabolism , Peptidoglycan/metabolism , Cell Cycle/physiology , Cell Membrane/metabolism , Cell Wall/metabolism , Lipoproteins/metabolism , Molecular Dynamics Simulation , Peptidyl Transferases/metabolism , Protein Binding/physiology
10.
Cell Rep ; 31(12): 107813, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32579939

ABSTRACT

Type VI secretion systems (T6SSs) are nanomachines used by bacteria to inject toxic effectors into competitors. The identity and mechanism of many effectors remain unknown. We characterized a Salmonella T6SS antibacterial effector called Tlde1 that is toxic in target-cell periplasm and is neutralized by its cognate immunity protein (Tldi1). Microscopy analysis reveals that cells expressing Tlde1 stop dividing and lose cell envelope integrity. Bioinformatic analysis uncovers similarities between Tlde1 and the catalytic domain of l,d-transpeptidases. Point mutations on conserved catalytic residues abrogate toxicity. Biochemical assays reveal that Tlde1 displays both l,d-carboxypeptidase activity by cleaving peptidoglycan tetrapeptides between meso-diaminopimelic acid3 and d-alanine4 and l,d-transpeptidase exchange activity by replacing d-alanine4 by a non-canonical d-amino acid. Phylogenetic analysis shows that Tlde1 homologs constitute a family of T6SS-associated effectors broadly distributed among Proteobacteria. This work expands our current knowledge about bacterial effectors used in interbacterial competition and reveals a different mechanism of bacterial antagonism.


Subject(s)
Anti-Bacterial Agents/pharmacology , Peptidoglycan/metabolism , Peptidyl Transferases/metabolism , Type VI Secretion Systems/metabolism , Bacterial Proteins/metabolism , Cell Division/drug effects , Escherichia coli/drug effects , Escherichia coli/metabolism , Evolution, Molecular , Periplasm/drug effects , Periplasm/metabolism , Proteobacteria/drug effects , Proteobacteria/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/metabolism
11.
mBio ; 11(2)2020 04 28.
Article in English | MEDLINE | ID: mdl-32345640

ABSTRACT

All enterococci produce a complex polysaccharide called the enterococcal polysaccharide antigen (EPA). This polymer is required for normal cell growth and division and for resistance to cephalosporins and plays a critical role in host-pathogen interaction. The EPA contributes to host colonization and is essential for virulence, conferring resistance to phagocytosis during the infection. Recent studies revealed that the "decorations" of the EPA polymer, encoded by genetic loci that are variable between isolates, underpin the biological activity of this surface polysaccharide. In this work, we investigated the structure of the EPA polymer produced by the high-risk enterococcal clonal complex Enterococcus faecalis V583. We analyzed purified EPA from the wild-type strain and a mutant lacking decorations and elucidated the structure of the EPA backbone and decorations. We showed that the rhamnan backbone of EPA is composed of a hexasaccharide repeat unit of C2- and C3-linked rhamnan chains, partially substituted in the C3 position by α-glucose (α-Glc) and in the C2 position by ß-N-acetylglucosamine (ß-GlcNAc). The so-called "EPA decorations" consist of phosphopolysaccharide chains corresponding to teichoic acids covalently bound to the rhamnan backbone. The elucidation of the complete EPA structure allowed us to propose a biosynthetic pathway, a first essential step toward the design of antimicrobials targeting the synthesis of this virulence factor.IMPORTANCE Enterococci are opportunistic pathogens responsible for hospital- and community-acquired infections. All enterococci produce a surface polysaccharide called EPA (enterococcal polysaccharide antigen) required for biofilm formation, antibiotic resistance, and pathogenesis. Despite the critical role of EPA in cell growth and division and as a major virulence factor, no information is available on its structure. Here, we report the complete structure of the EPA polymer produced by the model strain E. faecalis V583. We describe the structure of the EPA backbone, made of a rhamnan hexasaccharide substituted by Glc and GlcNAc residues, and show that teichoic acids are covalently bound to this rhamnan chain, forming the so-called "EPA decorations" essential for host colonization and pathogenesis. This report represents a key step in efforts to identify the structural properties of EPA that are essential for its biological activity and to identify novel targets to develop preventive and therapeutic approaches against enterococci.


Subject(s)
Antigens, Bacterial/chemistry , Enterococcus faecalis/metabolism , Polysaccharides/chemistry , Antigens, Bacterial/metabolism , Deoxy Sugars/chemistry , Deoxy Sugars/metabolism , Humans , Mannans/chemistry , Mannans/metabolism , Polysaccharides/metabolism , Teichoic Acids/chemistry , Teichoic Acids/metabolism , Vancomycin-Resistant Enterococci/metabolism
12.
Nat Chem Biol ; 16(1): 24-30, 2020 01.
Article in English | MEDLINE | ID: mdl-31686030

ABSTRACT

Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme.


Subject(s)
Lysostaphin/chemistry , Peptidoglycan/chemistry , Staphylococcus aureus/chemistry , Bacteriolysis/drug effects , Biofilms , Cell Wall/chemistry , Chromatography, High Pressure Liquid , DNA Mutational Analysis , Glycine/chemistry , Ligands , Magnetic Resonance Spectroscopy , Mutagenesis, Site-Directed , Peptides/chemistry , Protein Binding , Protein Domains , Recombinant Proteins/chemistry , src Homology Domains
13.
Cell ; 179(3): 703-712.e7, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31587897

ABSTRACT

Peptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya. Here we show that horizontally transferred genes on the mealybug genome work together with genes retained on the Moranella genome to produce a PG layer exclusively at the Moranella cell periphery. Furthermore, we show that an insect protein encoded by a horizontally transferred gene of bacterial origin is transported into the Moranella cytoplasm. These results provide a striking parallel to the genetic and biochemical mosaicism found in organelles, and prove that multiple horizontally transferred genes can become integrated into a functional pathway distributed between animal and bacterial endosymbiont genomes.


Subject(s)
Bacteria/genetics , Gene Transfer, Horizontal , Hemiptera/genetics , Peptidoglycan/biosynthesis , Symbiosis , Animals , Bacteria/pathogenicity , Genes, Bacterial , Hemiptera/microbiology , Host-Pathogen Interactions , Insect Proteins/genetics , Insect Proteins/metabolism , Peptidoglycan/genetics
14.
PLoS Pathog ; 15(5): e1007730, 2019 05.
Article in English | MEDLINE | ID: mdl-31048927

ABSTRACT

Enterococcus faecalis is an opportunistic pathogen with an intrinsically high resistance to lysozyme, a key effector of the innate immune system. This high level of resistance requires a complex network of transcriptional regulators and several genes (oatA, pgdA, dltA and sigV) acting synergistically to inhibit both the enzymatic and cationic antimicrobial peptide activities of lysozyme. We sought to identify novel genes modulating E. faecalis resistance to lysozyme. Random transposon mutagenesis carried out in the quadruple oatA/pgdA/dltA/sigV mutant led to the identification of several independent insertions clustered on the chromosome. These mutations were located in a locus referred to as the enterococcal polysaccharide antigen (EPA) variable region located downstream of the highly conserved epaA-epaR genes proposed to encode a core synthetic machinery. The epa variable region was previously proposed to be responsible for EPA decorations, but the role of this locus remains largely unknown. Here, we show that EPA decoration contributes to resistance towards charged antimicrobials and underpins virulence in the zebrafish model of infection by conferring resistance to phagocytosis. Collectively, our results indicate that the production of the EPA rhamnopolysaccharide backbone is not sufficient to promote E. faecalis infections and reveal an essential role of the modification of this surface polymer for enterococcal pathogenesis.


Subject(s)
Antigens, Surface/immunology , Enterococcus faecalis/pathogenicity , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/microbiology , Muramidase/immunology , Polysaccharides/immunology , Virulence , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterococcus faecalis/genetics , Enterococcus faecalis/immunology , Gram-Positive Bacterial Infections/metabolism , Muramidase/metabolism , Mutagenesis , Mutation , Polysaccharides/metabolism , Zebrafish/growth & development , Zebrafish/immunology , Zebrafish/microbiology
15.
Nat Commun ; 9(1): 1263, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29593214

ABSTRACT

Biopolymer composite cell walls maintain cell shape and resist forces in plants, fungi and bacteria. Peptidoglycan, a crucial antibiotic target and immunomodulator, performs this role in bacteria. The textbook structural model of peptidoglycan is a highly ordered, crystalline material. Here we use atomic force microscopy (AFM) to image individual glycan chains in peptidoglycan from Escherichia coli in unprecedented detail. We quantify and map the extent to which chains are oriented in a similar direction (orientational order), showing it is much less ordered than previously depicted. Combining AFM with size exclusion chromatography, we reveal glycan chains up to 200 nm long. We show that altered cell shape is associated with substantial changes in peptidoglycan biophysical properties. Glycans from E. coli in its normal rod shape are long and circumferentially oriented, but when a spheroid shape is induced (chemically or genetically) glycans become short and disordered.


Subject(s)
Cell Wall/chemistry , Molecular Imaging , Peptidoglycan/chemistry , Polysaccharides/chemistry , Anti-Bacterial Agents/chemistry , Bacillus subtilis/chemistry , Escherichia coli/chemistry , Microscopy, Atomic Force , Microscopy, Phase-Contrast , Models, Molecular , Polymers/chemistry
16.
Elife ; 72018 02 21.
Article in English | MEDLINE | ID: mdl-29465397

ABSTRACT

The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components.


Subject(s)
Cell Division , Gene Expression Regulation, Bacterial , Staphylococcus aureus/physiology , Cell Wall/metabolism , Gene Regulatory Networks , Models, Biological , Peptidoglycan/metabolism , Protein Interaction Maps
17.
BMC Genomics ; 18(1): 893, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29162049

ABSTRACT

BACKGROUND: The Gram-positive bacterium Enterococcus faecium is a commensal of the human gastrointestinal tract and a frequent cause of bloodstream infections in hospitalized patients. The mechanisms by which E. faecium can survive and grow in blood during an infection have not yet been characterized. Here, we identify genes that contribute to growth of E. faecium in human serum through transcriptome profiling (RNA-seq) and a high-throughput transposon mutant library sequencing approach (Tn-seq). RESULTS: We first sequenced the genome of E. faecium E745, a vancomycin-resistant clinical isolate, using a combination of short- and long read sequencing, revealing a 2,765,010 nt chromosome and 6 plasmids, with sizes ranging between 9.3 kbp and 223.7 kbp. We then compared the transcriptome of E. faecium E745 during exponential growth in rich medium and in human serum by RNA-seq. This analysis revealed that 27.8% of genes on the E. faecium E745 genome were differentially expressed in these two conditions. A gene cluster with a role in purine biosynthesis was among the most upregulated genes in E. faecium E745 upon growth in serum. The E. faecium E745 transposon mutant library was then used to identify genes that were specifically required for growth of E. faecium in serum. Genes involved in de novo nucleotide biosynthesis (including pyrK_2, pyrF, purD, purH) and a gene encoding a phosphotransferase system subunit (manY_2) were thus identified to be contributing to E. faecium growth in human serum. Transposon mutants in pyrK_2, pyrF, purD, purH and manY_2 were isolated from the library and their impaired growth in human serum was confirmed. In addition, the pyrK_2 and manY_2 mutants were tested for their virulence in an intravenous zebrafish infection model and exhibited significantly attenuated virulence compared to E. faecium E745. CONCLUSIONS: Genes involved in carbohydrate metabolism and nucleotide biosynthesis of E. faecium are essential for growth in human serum and contribute to the pathogenesis of this organism. These genes may serve as targets for the development of novel anti-infectives for the treatment of E. faecium bloodstream infections.


Subject(s)
Enterococcus faecium/genetics , Genetic Fitness , Vancomycin-Resistant Enterococci/genetics , Animals , Blood , Enterococcus faecium/growth & development , Gene Expression Profiling , Genome, Bacterial , Gram-Positive Bacterial Infections/genetics , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, RNA , Vancomycin-Resistant Enterococci/growth & development , Zebrafish
18.
PLoS Pathog ; 13(7): e1006526, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28742152

ABSTRACT

Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections.


Subject(s)
Cell Wall/metabolism , Enterococcus faecalis/cytology , Enterococcus faecalis/pathogenicity , Gram-Positive Bacterial Infections/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Division , Cell Wall/genetics , Enterococcus faecalis/enzymology , Enterococcus faecalis/genetics , Humans , N-Acetylmuramoyl-L-alanine Amidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Virulence , Zebrafish/microbiology
19.
IUCrJ ; 4(Pt 2): 185-198, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28250957

ABSTRACT

Peptidoglycan is a giant molecule that forms the cell wall that surrounds bacterial cells. It is composed of alternating N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) residues connected by ß-(1,4)-glycosidic bonds and cross-linked with short polypeptide chains. Owing to the increasing antibiotic resistance against drugs targeting peptidoglycan synthesis, studies of enzymes involved in the degradation of peptidoglycan, such as N-acetylglucos-aminidases, may expose new, valuable drug targets. The scientific challenge addressed here is how lysozymes, muramidases which are likely to be the most studied enzymes ever, and bacterial N-acetylglucosaminidases discriminate between two glycosidic bonds that are different in sequence yet chemically equivalent in the same NAG-NAM polymers. In spite of more than fifty years of structural studies of lysozyme, it is still not known how the enzyme selects the bond to be cleaved. Using macromolecular crystallography, chemical synthesis and molecular modelling, this study explains how these two groups of enzymes based on an equivalent structural core exhibit a difference in selectivity. The crystal structures of Staphylococcus aureusN-acetylglucosaminidase autolysin E (AtlE) alone and in complex with fragments of peptidoglycan revealed that N-acetylglucosaminidases and muramidases approach the substrate at alternate glycosidic bond positions from opposite sides. The recognition pocket for NAM residues in the active site of N-acetylglucosaminidases may make them a suitable drug target.

20.
Anal Bioanal Chem ; 409(2): 551-560, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27520322

ABSTRACT

Peptidoglycan (PG) is an essential component of the bacterial cell envelope. This macromolecule consists of glycan chains alternating N-acetylglucosamine and N-acetylmuramic acid, cross-linked by short peptides containing nonstandard amino acids. Structural analysis of PG usually involves enzymatic digestion of glycan strands and separation of disaccharide peptides by reversed-phase HPLC followed by collection of individual peaks for MALDI-TOF and/or tandem mass spectrometry. Here, we report a novel strategy using shotgun proteomics techniques for a systematic and unbiased structural analysis of PG using high-resolution mass spectrometry and automated analysis of HCD and ETD fragmentation spectra with the Byonic software. Using the PG of the nosocomial pathogen Clostridium difficile as a proof of concept, we show that this high-throughput approach allows the identification of all PG monomers and dimers previously described, leaving only disambiguation of 3-3 and 4-3 cross-linking as a manual step. Our analysis confirms previous findings that C. difficile peptidoglycans include mainly deacetylated N-acetylglucosamine residues and 3-3 cross-links. The analysis also revealed a number of low abundance muropeptides with peptide sequences not previously reported. Graphical Abstract The bacterial cell envelope includes plasma membrane, peptidoglycan, and surface layer. Peptidoglycan is unique to bacteria and the target of the most important antibiotics; here it is analyzed by mass spectrometry.


Subject(s)
Bacterial Proteins/chemistry , Chemistry Techniques, Analytical/methods , Peptidoglycan/chemistry , Automation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...