Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067113

ABSTRACT

Modified starches offer a biodegradable, readily available, and cost-effective alternative to petroleum-based products. The reaction of alkenylsuccinic anhydrides (ASAs), in particular, is an efficient method to produce amphiphilic starches with numerous applications in different areas. While ASAs are typically derived from petroleum sources, maleated soybean oil can also be used in an effort to produce materials from renewable sources. The reaction of gelatinized waxy maize starch with octenylsuccinic anhydride (OSA), dodecenylsuccinic anhydride (DDSA), a maleated fatty acid (TENAX 2010), phthalic anhydride (PA), 1,2,4-benzenetricarboxylic acid anhydride (trimellitic anhydride, TMA), and three maleated soybean oil samples, was investigated under different conditions. To minimize the reaction time and the amount of water required, the outcome of the esterification reaction was compared for starch dispersions in benchtop dispersed reactions, for starch melts in a heated torque rheometer, and for reactive extrusion in a pilot plant scale twin-screw extruder. The extent of reaction was quantified by 1H NMR analysis, and changes in molecular weight and diameter were monitored by gel permeation chromatography (GPC) analysis. The outcome of the reactions varied markedly in terms of reaction efficiency (RE), molecular weight distribution, and average hydrodynamic diameter, for the products derived from the different maleated reagents used, as well as for the different reaction protocols.

2.
Molecules ; 27(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35011281

ABSTRACT

Humankind is facing a climate and energy crisis which demands global and prompt actions to minimize the negative impacts on the environment and on the lives of millions of people. Among all the disciplines which have an important role to play, chemistry has a chance to rethink the way molecules are made and find innovations to decrease the overall anthropic footprint on the environment. In this paper, we will provide a review of the existing knowledge but also recent advances on the manufacturing and end uses of acrylamide-based polymers following the "green chemistry" concept and 100 years after the revolutionary publication of Staudinger on macromolecules. After a review of raw material sourcing options (fossil derivatives vs. biobased), we will discuss the improvements in monomer manufacturing followed by a second part dealing with polymer manufacturing processes and the paths followed to reduce energy consumption and CO2 emissions. In the following section, we will see how the polyacrylamides help reduce the environmental footprint of end users in various fields such as agriculture or wastewater treatment and discuss in more detail the fate of these molecules in the environment by looking at the existing literature, the regulations in place and the procedures used to assess the overall biodegradability. In the last section, we will review macromolecular engineering principles which could help enhance the degradability of said polymers when they reach the end of their life cycle.

3.
ChemSusChem ; 2(12): 1125-9, 2009.
Article in English | MEDLINE | ID: mdl-19856380

ABSTRACT

The design of industrial products based on bioresources is a challenging issue. Modification of starch, by hydrophobic chemical substituents, results in an innovative hydrophobic material. Herein, the hydrophobic part of the derivative, comprised of octadienyl chains, is introduced through catalytic butadiene telomerization. The process is efficiently conducted on starch in its granular form in an aqueous medium using hydrosoluble palladium complexes. After optimization, a turnover number (TON) of up to 550 was achieved in the presence of [(pi-allyl)PdCl](2) catalyst and, unusually, by using dimethylisosorbide as a cosolvent.


Subject(s)
Butadienes/chemistry , Starch/chemistry , Biomass , Catalysis , Chemical Industry/methods , Hydrophobic and Hydrophilic Interactions , Palladium/chemistry , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...