Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37027264

ABSTRACT

With the adoption of smart systems, artificial neural networks (ANNs) have become ubiquitous. Conventional ANN implementations have high energy consumption, limiting their use in embedded and mobile applications. Spiking neural networks (SNNs) mimic the dynamics of biological neural networks by distributing information over time through binary spikes. Neuromorphic hardware has emerged to leverage the characteristics of SNNs, such as asynchronous processing and high activation sparsity. Therefore, SNNs have recently gained interest in the machine learning community as a brain-inspired alternative to ANNs for low-power applications. However, the discrete representation of the information makes the training of SNNs by backpropagation-based techniques challenging. In this survey, we review training strategies for deep SNNs targeting deep learning applications such as image processing. We start with methods based on the conversion from an ANN to an SNN and compare these with backpropagation-based techniques. We propose a new taxonomy of spiking backpropagation algorithms into three categories, namely, spatial, spatiotemporal, and single-spike approaches. In addition, we analyze different strategies to improve accuracy, latency, and sparsity, such as regularization methods, training hybridization, and tuning of the parameters specific to the SNN neuron model. We highlight the impact of input encoding, network architecture, and training strategy on the accuracy-latency tradeoff. Finally, in light of the remaining challenges for accurate and efficient SNN solutions, we emphasize the importance of joint hardware-software codevelopment.

2.
Nat Commun ; 13(1): 3506, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717413

ABSTRACT

Real-world sensory-processing applications require compact, low-latency, and low-power computing systems. Enabled by their in-memory event-driven computing abilities, hybrid memristive-Complementary Metal-Oxide Semiconductor neuromorphic architectures provide an ideal hardware substrate for such tasks. To demonstrate the full potential of such systems, we propose and experimentally demonstrate an end-to-end sensory processing solution for a real-world object localization application. Drawing inspiration from the barn owl's neuroanatomy, we developed a bio-inspired, event-driven object localization system that couples state-of-the-art piezoelectric micromachined ultrasound transducer sensors to a neuromorphic resistive memories-based computational map. We present measurement results from the fabricated system comprising resistive memories-based coincidence detectors, delay line circuits, and a full-custom ultrasound sensor. We use these experimental results to calibrate our system-level simulations. These simulations are then used to estimate the angular resolution and energy efficiency of the object localization model. The results reveal the potential of our approach, evaluated in orders of magnitude greater energy efficiency than a microcontroller performing the same task.


Subject(s)
Computers , Ultrasonics , Semiconductors , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...