Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comp Cytogenet ; 9(4): 549-63, 2015.
Article in English | MEDLINE | ID: mdl-26753074

ABSTRACT

Plectranthus is a genus which includes species of ornamental and medicinal potential. It faces taxonomic problems due to aggregating species previously belonging to the genus Coleus, a fact that has contributed to the existence of various synonymies. The species Plectranthus amboinicus, Plectranthus barbatus, Plectranthus grandis and Plectranthus neochilus are included in this context. Some authors consider Plectranthus barbatus and Plectranthus grandis as synonyms. The present work was carried out with the aim of comparing plants of the above-mentioned species, originating from different localities in Brazil, with regards to chromosome number and karyotypic morphology, correlated to the nuclear DNA content. There was no variation in chromosome number among plants of the same species. Plectranthus amboinicus was the only species to exhibit 2n=34, whereas the others had 2n=30. No karyotypic differences were found among the plants of each species, except for Plectranthus barbatus. The plants of the Plectranthus species revealed little coincidence between chromosome pairs. The nuclear DNA content allowed grouping Plectranthus amboinicus and Plectranthus neochilus, with the highest mean values, and Plectranthus grandis and Plectranthus barbatus with the lowest ones. Differences in DNA amount among the plants were identified only for Plectranthus barbatus. These results allow the inference that the populations of Plectranthus amboinicus and Plectranthus neochilus present coincident karyotypes among their plants, and Plectranthus grandis is probably a synonym of Plectranthus barbatus.

2.
Comp Cytogenet ; 8(3): 199-209, 2014.
Article in English | MEDLINE | ID: mdl-25349671

ABSTRACT

The genus Pennisetum (Richard, 1805) includes two economically important tropical forage plants: Pennisetum purpureum (Schumacher, 1827) (elephant grass), with 2n = 4x = 28 chromosomes and genomes A'A'BB, and Pennisetum glaucum (Linnaeus, 1753) (pearl millet), with 2n = 2x = 14 chromosomes and genomes AA. The genetic proximity between them allows hybrids to be obtained (2n = 3x = 21) that yield forage of higher quality in relation to the parents. The study of genomic relationships provides subsidies for the knowledge about phylogenetic relations and evolution, and is useful in breeding programs seeking gene introgression. Concerning elephant grass and pearl millet, the homeology between the genomes A and A', and between these and the genome B, has been reported by conventional cytogenetic techniques. The objective of the present study was to demonstrate the degree of homeology between these genomes by means of genomic in situ hybridization (GISH). The results confirmed the homeology between the genomes A of pearl millet and A'B of elephant grass, and showed that there are differences in the distribution and proportion of homologous regions after hybridization. Discussion regarding the evolutionary origin of P. purpureum and P. glaucum was also included.

SELECTION OF CITATIONS
SEARCH DETAIL
...