Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 39(7): 991-1002, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11223088

ABSTRACT

The venom of a Brazilian spider, Lasiodora sp (Mygalomorphae, Theraphosidae), was screened for activity against ion channels using Ca2+ imaging and whole-cell patch clamp in GH3 cells. When tetrodotoxin (TTX) was present to block Na+ channels, the venom abolished the Ca2+ oscillations that are normally present in these cells and reduced the basal level of intracellular Ca2+. Under patch clamp, the venom reduced the L-type Ca2+ channel conductance and caused a positive shift in its voltage dependence of activation. In addition to these effects, when applied without TTX, the venom also caused a slow and noisy increase in intracellular Ca2+. The sensitivity of this second effect to TTX suggested an effect on Na+ channels, which was tested using patch clamp. Control Na+ currents inactivated completely as a single exponential. Treatment with the venom did not affect the amplitude of I(Na), but caused it to divide in two slower exponential components plus a sustained component, all of which were suppressed by TTX. The venom also caused a negative shift in the voltage dependence of activation and steady-state inactivation of I(Na). The observed effects of this venom on whole-cell currents explain the changes it causes in intracellular Ca2+ in GH3 cells and demonstrate that the venom of this spider is a source of toxins active against ion channels.


Subject(s)
Calcium Channels/drug effects , Sodium Channels/drug effects , Spider Venoms/pharmacology , Algorithms , Barium/metabolism , Calcium Channels, L-Type/drug effects , Cell Line , Fluorescent Dyes , Ion Channel Gating/drug effects , Kinetics , Patch-Clamp Techniques , Spider Venoms/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...