Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 22(21): 26103-16, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25401643

ABSTRACT

The photosensitivity of GeS(x) binary glasses in response to irradiation to femtosecond pulses at 800 nm is investigated. Samples with three different molecular compositions were irradiated under different exposure conditions. The material response to laser exposure was characterized by both refractometry and micro-Raman spectroscopy. It is shown that the relative content of sulfur in the glass matrix influences the photo-induced refractive index modification. At low sulfur content, both positive and negative index changes can be obtained while at high sulfur content, only a positive index change can be reached. These changes were correlated with variations in the Raman response of exposed glass which were interpreted in terms of structural modifications of the glass network. Under optimized exposure conditions, waveguides with positive index changes of up to 7.8 x 10(-3)and a controllable diameter from 14 to 25 µm can be obtained. Direct inscription of low insertion losses (IL = 3.1 - 3.9 dB) waveguides is demonstrated in a sample characterized by a S/Ge ratio of 4. The current results open a pathway towards the use of Ge-S binary glasses for the fabrication of integrated mid-infrared photonic components.


Subject(s)
Glass/chemistry , Photons , Refractometry/instrumentation , Spectrum Analysis, Raman/instrumentation , Equipment Design , Lasers
2.
Opt Express ; 20(3): 2824-31, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22330518

ABSTRACT

We present the first study of the photosensitivity of GeS binary glasses in response to irradiation to femtosecond pulses at 800 nm. A maximum positive refractive index change of 3.5x10(-3) is demonstrated with the possibility to control the waveguide diameter from ~8 to ~50 µm by adjusting the input pulse energy. It is also demonstrated that under different exposure conditions, a maximum negative index change of -7.5x10(-3) can be reached. The present results clearly illustrate the potential of this family of glasses for the fabrication of mid-infrared waveguides.


Subject(s)
Germanium/chemistry , Germanium/radiation effects , Glass/chemistry , Glass/radiation effects , Lasers , Silicon/chemistry , Silicon/radiation effects , Dose-Response Relationship, Radiation , Light , Materials Testing
3.
Opt Express ; 20(28): 29882-9, 2012 Dec 31.
Article in English | MEDLINE | ID: mdl-23388814

ABSTRACT

Self-organized periodic structures have been observed on the surface of the ablation craters of Ge-S based chalcogenide glass produced after irradiation by a focused beam of a femtosecond Ti:sapphire laser (1 kHz, 34 fs, 806 nm). Scanning electron microscopy and atomic force microscopy images of irradiated spots show a periodic structure of ripples with a spatial period of 720 nm (close to the wavelength of fs laser pulses) and an alignment parallel to the electric field of light. With an increasing number of pulses, from 5 to 50 pulses, a characteristic evolution of ripples was observed from a random structure to a series of generally aligned peaks-and-valleys self-organized periodic structures. Additionally, at the center of the ablated spot, micro-domains appear where the ripples are still regular but are assembled in a more complex fashion. The experimental observations are interpreted in terms of strong temperature gradients combined with interference of the incident laser irradiation and a scattered surface electromagnetic wave.

SELECTION OF CITATIONS
SEARCH DETAIL
...