Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(10): e2203302, 2023 04.
Article in English | MEDLINE | ID: mdl-36546310

ABSTRACT

Fibrin-collagen hydrogel blends exhibit high potential for tissue engineering applications. However, it is still unclear whether the underlying cross-linking mechanisms are of chemical or physical nature. It is here hypothesized that chemical cross-linkers play a negligible role and that instead pH and thrombin concentration are decisive for synthetizing blends with high stiffness and hydrolytic stability. Different fibrin-collagen formulations (pure and with additional transglutaminase) are used and the blends' compaction rate, hydrolytic stability, compressive strength, and hydrogel microstructure are investigated. The effect of thrombin concentration on gel compaction is examined and the importance of pH control during synthesis observed. It is revealed that transglutaminase impairs gel stability and it is deduced that fibrin-collagen blends mainly cross-link by mechanical interactions due to physical fibril entanglement as opposed to covalent bonds from chemical cross-linking. High thrombin concentrations and basic pH during synthesis reduce gel compaction and enhance stiffness and long-term stability. Scanning electron microscopy reveals a highly interpenetrating fibrous network with unique, interconnected open-porous microstructures. Endothelial cells proliferate on the blends and form a confluent monolayer. This study reveals the underlying cross-linking mechanisms and presents enhanced fibrin-collagen blends with high stiffness, hydrolytic stability, and large, interconnected pores; findings that offer high potential for advanced tissue engineering applications.


Subject(s)
Endothelial Cells , Thrombin , Fibrin/chemistry , Porosity , Biocompatible Materials/chemistry , Collagen/chemistry , Tissue Engineering , Hydrogels/chemistry , Hydrogen-Ion Concentration
2.
J Phys Chem Lett ; 11(6): 1989-1997, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32101432

ABSTRACT

What is the pressure generated by ice crystals during ice-templating? This work addresses this crucial question by estimating the pressure exerted by oriented ice columns on a supramolecular probe composed of a lipid lamellar hydrogel during directional freezing. This process, also known as freeze-casting, has emerged as a unique processing technique for a broad class of organic, inorganic, soft, and biological materials. Nonetheless, the pressure exerted during and after crystallization between two ice columns is not known, despite its importance with respect to the fragility of the frozen material, especially for biological samples. By using the lamellar period of a glycolipid lamellar hydrogel as a common probe, we couple data obtained from ice-templated-resolved in situ synchrotron small-angle X-ray scattering (SAXS) with data obtained from controlled adiabatic desiccation experiments. We estimate the pressure to vary between 1 ± 10% kbar at -15 °C and 3.5 ± 20% kbar at -60 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...