Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(18): 8059-8069, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38655576

ABSTRACT

Ionic liquids (ILs) have significant potential for eco-friendly extraction of uranium from aqueous solutions, which is critical for nuclear technology, fuel cycle management, and environmental protection. This study examines the impact of the adjustable hydrophobic/hydrophilic properties of ILs on the removal of uranium(VI) (UO22+) from aqueous solutions utilizing both a novel hydrophilic IL (1-butoxyethyl-1-methylmorpholinium butoxyethylphosphite - Mor1-2O4-BOEP) and 1-heptyl-1-methylmorpholinium heptylphosphite (Mor1-7-HP) as an example of a hydrophobic IL with a similar structure. The transfer mechanism of uranyl ions from water to organic or solid phases closely depends on the physicochemical properties of ILs, especially their hydrophobicity. The hydrophobic Mor1-7-HP extracts uranyl via neutral complex formation as UO2(NO3)2-(Mor1-7-HP)2. Conversely, hydrophilic Mor1-2O4-BOEP induced selective precipitation as UO2(NO3)-(BOEP), transferring uranyl to the solid phase. Optimization of the working parameters, in terms of acidity of the aqueous solution and amount of ILs used, allowed the extraction of over 98% of U(VI). The stoichiometry of the organic complex and the precipitate was determined using physicochemical techniques. These tunable H-phosphonate-based ILs have advantages over traditional solvent extraction and conventional ILs, allowing easier handling, improved selectivity, and lower environmental impact. This work advances uranium separation techniques with applications in hydrometallurgy, particularly in the treatment of wastewater and radioactive waste for sustainable uranium recovery.

2.
Heliyon ; 10(4): e26341, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404822

ABSTRACT

A novel isoxazolidine derivative (ISoXD) dye was successfully synthesized and comprehensively characterized. In this study, we conducted a thorough examination of its various properties, including optical characteristics, interactions with DNA and ß-cyclodextrin (ß-CD), molecular docking, molecular dynamic simulation, and density functional theory (DFT) calculations. Our investigation encompassed a systematic analysis of the absorption and emission spectra of ISoXD in diverse solvents. The observed variations in the spectroscopic data were attributed to the specific solvent's capacity to engage in hydrogen bonding interactions. Remarkably, the most pronounced intensities were observed in glycol, which can establish many hydrogen bonds with ISoXD. Furthermore, our study revealed a significant distinction in the fluorescence behavior of ISoXD when subjected to different solvents, particularly between CHCl3 and CDCl3. Moreover, we explored the fluorescence intensity of the ISoXD complex in the presence of various metals, both in ethanol and water. The ISoXD complex exhibited a substantial increase of fluorescence upon interaction with different metal ions. The utilization of DFT calculations allowed us to propose an intramolecular charge transfer (ICT) mechanism as a plausible explanation for this quenching phenomenon. The interaction of ISoXD with DNA and ß-CD was studied using absorption spectra. The binding constant (K) and the standard Gibbs free energy change (ΔGo) for the interaction between DNA and ß-CD with ISoXD were determined. In docking study, ISoXD exhibited significant docking scores (-6.511) and MM-GBSA binding free energies (-66.27 kcal/mol) within the PARP-1 binding cavity. Its binding pattern closely resembles to the co-crystal ligand veliparib, and during a 100ns MD simulation, ISoXD displayed strong stability and formed robust hydrogen bonds with key amino acids. These findings suggest ISoXD's potential as a PARP-1 inhibitor for further investigation in therapeutic development.

4.
RSC Adv ; 13(28): 19607-19616, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37388147

ABSTRACT

Graphene and other 2D materials have gained significant attention in the development of gas sensors. In this study, we employed Density Functional Theory (DFT) to investigate the adsorption properties of diazomethanes (1a-1g) with various functional groups (R = OH (a), OMe (b), OEt (c), OPr (d), CF3 (e), Ph (f)) on pristine graphene. Furthermore, we explored the adsorption behavior of activated carbenes (2a-2g) generated from the decomposition of diazomethanes on graphene, as well as the functionalized graphene derivatives (3a-3g) resulting from [2 + 1] cycloaddition reactions between (2a-2g) and graphene. The interaction between these functionalized derivatives (3a-3g) and toxic gases was also investigated. Our results revealed that carbenes exhibited a stronger affinity for graphene compared to diazomethanes. The adsorption energy of esters (3b, 3c, and 3d) on graphene decreased relative to compound 3a, while 3e exhibited increased adsorption energy due to the electron-withdrawing effect of fluorine atoms. Additionally, the adsorption energy of phenyl and nitrophenyl groups (3f and 3g) decreased due to their π-stacking interaction with graphene. Importantly, all functionalized derivatives (3a-3g) demonstrated favorable interactions with gases. Notably, the derivative 3a, acting as a hydrogen bonding donor, exhibited superior performance. Furthermore, modified graphene derivatives exhibited the highest adsorption energy with NO2 gas, highlighting their potential for selective NO2 sensing applications. These findings contribute to the understanding of gas-sensing mechanisms and the design of novel graphene-based sensor platforms.

5.
Saudi J Biol Sci ; 30(3): 103598, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36874197

ABSTRACT

The condensation of (1H-benzimidazole-2-yl) methanamine, with 2-hydroxy naphthaldehyde lead to Schiff base ligand (H2L) (1). This was later reacted with metal salts (ZnCl2, CrCl3·6H2O, and MnCl2·4H2O) to afford the corresponding metal complexes. Biological activity findings indicate that the metal complexes have promising activity against Escherichia coli and Bacillus subtilis and modest activity against Aspergillus niger. The in vitro anticancer activities of Zn (II), Cr (III), and Mn (II) complexes were investigated and the best results were observed with Mn (II) complex as the most potent cytotoxic agent toward human cell lines colorectal adenocarcinoma HCT 116, hepatocellular carcinoma HepG2 and breast adenocarcinoma MCF-7 with 0.7, 1.1 and 6.7 µg of inhibitory concentration IC50 values respectively. Consequently, the Mn (II) complex and ligand were docked inside the energetic site of ERK2 and exhibited favorable energy for binding. The investigation of biological tests towards mosquito larvae indicates that Cr (III) and Mn (II) complexes manifest strong toxicity against Aedes aegypti larvae with 3.458 and 4.764 ppm values of lethal concentration LC50, respectively.

6.
Molecules ; 28(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36985391

ABSTRACT

This work aimed to evaluate the biological activities of 20 flavones (M1 to M20) and discuss their structure-activity relationships. In vitro assays were established to assess their numerous biological activities (anti-α-amylase, anti-acetylcholinesterase, anti-xanthine oxidase, anti-superoxide dismutase, and anticancer cell lines (HCT-116, MCF7, OVCAR-3, IGROV-1, and SKOV-3 cells lines)). An in silico docking study was also established in order to find the relationship between the chemical structure and the biological activities. In vitro tests revealed that M5 and M13 were the most active in terms of anti-α-amylase activity (IC50 = 1.2 and 1.4 µM, respectively). M17 was an inhibitor of xanthine oxidase (XOD) and performed better than the reference (allopurinol), at IC50 = 0.9 µM. M7 presented interesting anti-inflammatory (IC50 = 38.5 µM), anti-supriode dismutase (anti-SOD) (IC50 = 31.5 µM), and anti-acetylcholinesterase (IC50 = 10.2 µM) activities. Those abilities were in concordance with its high scavenging activity in antioxidant ABTS and DPPH assays, at IC50 = 6.3 and 5.2 µM, respectively. Selectivity was detected regarding cytotoxic activity for those flavones. M1 (IC50 = 35.9 µM) was a specific inhibitor to the MCF7 cancer cell lines. M3 (IC50 = 44.7 µM) and M15 (IC50 = 45.6 µM) were particularly potent for the OVCAR-3 cell line. M14 (IC50 = 4.6 µM) contributed more clearly to inhibiting the colon cancer cell line (HCT116). M7 (IC50 = 15.6 µM) was especially active against the ovarian SKOV human cancer cell line. The results of the biological activities were supported by means of in silico molecular docking calculations. This investigation analyzed the contribution of the structure-activity of natural flavones in terms of their biological properties, which is important for their future application against diseases.


Subject(s)
Antineoplastic Agents , Flavones , Ovarian Neoplasms , Humans , Female , Flavones/pharmacology , Molecular Docking Simulation , Apoptosis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Superoxide Dismutase/metabolism , Xanthine Oxidase , Amylases/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Cell Proliferation
7.
Antibiotics (Basel) ; 12(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36978368

ABSTRACT

The current study aimed to investigate the phytochemical contents and antioxidant, antimicrobial, and antibiofilm activities of four halophytic plants, namely, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, native to central Saudi Arabia. The alcoholic extract of E. chamaesyce was found to be the most potent in various bioactivities-based evaluations and rich in polyphenols and flavonoid secondary metabolites, with 68.0 mg/g and 39.23 mg/g gallic acid and quercetin equivalents, respectively. Among all plants' extracts, the alcoholic extract of E. chamaesyce had the highest DPPH scavenging and metal chelating antioxidant activities at 74.15 Trolox equivalents and 16.28 EDTA equivalents, respectively. The highest antimicrobial activity of E. chamaesyce extract was found to be against Shigella flexneri, with a mean zone of inhibition diameter of 18.1 ± 0.2 mm, whereas the minimum inhibitory concentration, minimum biocidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration values were 12.5, 25, 25, and 50 mg/mL, respectively. The LC-ESI-MS/MS analysis of the E. chamaesyce extract showed the presence of six flavonoids and ten phenolic constituents. The in silico binding of the E. chamaesyce extract's constituents to Staphylococcus aureus tyrosyl-tRNA synthetase enzyme displayed -6.2 to -10.1 kcal/mol binding energy values, suggesting that these constituents can contribute to the antimicrobial properties of the plant extract, making it an essential medicinal ingredient. In conclusion, these results warrant further investigation to standardize the antimicrobial profiles of these plant extracts.

8.
Biosensors (Basel) ; 13(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36979571

ABSTRACT

Throughout this research, a unique optical sensor for detecting one of the most dangerous heavy metal ions, Cu(II), was designed and developed. The (4-mercaptophenyl) iminomethylphenyl naphthalenyl carbamate (MNC) sensor probe was effectively prepared. The Schiff base of the sensor shows a "turn-off" state with excellent sensitivity to Cu(II) ions. This innovative fluorescent chemosensor possesses distinctive optical features with a substantial Stocks shift (about 114 nm). In addition, MNC has remarkable selectivity for Cu(II) relative to other cations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical calculations were performed to examine Cu(II) chelation structures and associated electronic properties in solution, and the results indicate that the luminescence quenching in this complex is due to ICT. Chelation-quenched fluorescence is responsible for the internal charge transfer (ICT)-based selectivity of the MNC sensing molecule for Cu(II) ions. In a 1:9 (v/v) DMSO-HEPES buffer (20 mM, pH = 7.4) solution, Fluorescence and UV-Vis absorption of the MNC probe and Cu(II) ions were investigated. By utilizing a solution containing several metal ions, the interference of other metal ions was studied. This MNC molecule has outstanding selectivity and sensitivity, as well as a low LOD (1.45 nM). Consequently, these distinctive properties enable it to find the copper metal ions across an actual narrow dynamic range (0-1.2 M Cu(II)). The reversibility of the sensor was obtained by employing an EDTA as a powerful chelating agent.


Subject(s)
Fluorescent Dyes , Schiff Bases , Spectrometry, Fluorescence , Schiff Bases/chemistry , Fluorescent Dyes/chemistry , Copper/chemistry , Metals , Ions
9.
Pharmaceutics ; 15(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36839780

ABSTRACT

A novel series of benzimidazole ureas 3a-h were elaborated using 2-(1H-benzoimidazol-2-yl) aniline 1 and the appropriate isocyanates 2a-h. The antioxidant and possible antidiabetic activities of the target benzimidazole-ureas 3a-h were evaluated. Almost all compounds 3a-h displayed strong to moderate antioxidant activities. When tested using the three antioxidant techniques, TAC, FRAP, and MCA, compounds 3b and 3c exhibited marked activity. The most active antioxidant compound in this family was compound 3g, which had excellent activity using four different methods: TAC, FRAP, DPPH-SA, and MCA. In vitro antidiabetic assays against α-amylase and α-glucosidase enzymes revealed that the majority of the compounds tested had good to moderate activity. The most favorable results were obtained with compounds 3c, 3e, and 3g, and analysis revealed that compounds 3c (IC50 = 18.65 ± 0.23 µM), 3e (IC50 = 20.7 ± 0.06 µM), and 3g (IC50 = 22.33 ± 0.12 µM) had good α-amylase inhibitory potential comparable to standard acarbose (IC50 = 14.21 ± 0.06 µM). Furthermore, the inhibitory effect of 3c (IC50 = 17.47 ± 0.03 µM), 3e (IC50 = 21.97 ± 0.19 µM), and 3g (IC50 = 23.01 ± 0.12 µM) on α-glucosidase was also comparable to acarbose (IC50 = 15.41 ± 0.32 µM). According to in silico molecular docking studies, compounds 3a-h had considerable affinity for the active sites of human lysosomal acid α-glucosidase (HLAG) and pancreatic α-amylase (HPA), indicating that the majority of the examined compounds had potential anti-hyperglycemic action.

10.
Biosensors (Basel) ; 12(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36421146

ABSTRACT

We developed a new optical sensor for tracing Hg(II) ions. The detection affinity examines within a concentration range of 0-4.0 µM Hg(II). The sensor film is based on Methyl 2-hydroxy-3-(((2S,2'R,3a'S,5R)-2-isopropyl-5,5'-dimethyl-4'-oxotetrahydro-2'H-spiro[cy-clohexane-1,6'-im-idazo[1,5-b]isoxazol]-2'-yl)methyl)-5-methylbenzoate (IXZD). The novel synthesized compound could be utilized as an optical turn-on chemosensor for pH. The emission intensity is highly enhanced for the deprotonated form concerning the protonated form. IXZD probe has a characteristic fluorescence peak at 481 nm under excitation of 351 nm with large Stocks shift of approximately 130 nm. In addition, the binding process of IXZD:Hg(II) presents a 1:1 molar ratio which is proved by the large quench of the 481 nm emission peak of IXZD and the growth of a new emission peak at 399 nm (blue shift). The binding configurations with one Hg(II) cation and its electronic characteristics were investigated by applying the Density Functional Theory (DFT) and the time-dependent DFT (TDDFT) calculations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical results were provided to examine Hg(II)-IXZD structures and their electronic properties in solution. The developed chemical sensor was offered based on the intramolecular charge transfer (ICT) mechanism. The sensor film has a significantly low limit of detection (LOD) for Hg(II) of 0.025 µM in pH 7.4, with a relative standard deviation RSDr (1%, n = 3). Lastly, the IXZD shows effective binding affinity to mercury ions, and the binding constant Kb was estimated to be 5.80 × 105 M-1. Hence, this developed optical sensor film has a significant efficiency for tracing mercury ions based on IXZD molecule-doped sensor film.


Subject(s)
Mercury , Mercury/chemistry , Ions , Limit of Detection , Spectrometry, Fluorescence , Hydrogen-Ion Concentration
11.
ACS Omega ; 7(3): 2661-2670, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35097264

ABSTRACT

Hydroxymethylsilanetriol undergoes condensation reactions to form new structures with an organic part in the formed bridges. As a first step to explore the formation of these bridges, we studied the corresponding mechanisms using simple models and theoretical methods. Three mechanisms were studied for the formation of dimers of hydroxymethylsilanetriol with bridges: Si-O-C-Si, Si-O-Si, and Si-C-O-C-Si. Energies are calculated using M06/6-311+G(d,p) single-point calculations on B3LYP-optimized geometries in solution and including B3LYP thermodynamic corrections. The first mechanism for the formation of the Si-O-C-Si bridge consists of one step. The second mechanism for the formation of the Si-O-Si bridge consists of two steps. The barrier for the last mechanism for the formation of the Si-C-O-C-Si bridge is too high and cannot occur at room temperature. The energy barriers are 31.8, 27.6, and 65.9 kcal mol-1 for the first, second, and third mechanisms, respectively. When adding one explicit water molecule, these energies are 25.9, 22.9, and 80.3 kcal mol-1, respectively. The first and second mechanisms can occur at room temperature, which is in agreement with the experimental results.

12.
Bioorg Chem ; 114: 105073, 2021 09.
Article in English | MEDLINE | ID: mdl-34153810

ABSTRACT

Synthetic routes to a series of benzoylarylbenzimidazol 3a-h have been derived from 3,4-diaminobenzophenone and an appropriate arylaldehyde in the presence of ammonium chloride or a mixture of ammonium chloride and sodium metabisulfite as catalyst. The antioxidant activity of targeted compounds 3a-h has been measured by four different methods and the overall antioxidant evaluation of the compounds indicated the significant MCA, FRAP, and (DPPH-SA) of the compounds except for the compound 3h. In vitro antidiabetic assay of α-amylase and α-glucosidase suggest a good to excellent activity for most tested compounds. The target benzimidazole 3f containing hydroxyl motif at para-position of phenyl revealed an important activity inhibitor against α- amylase (IC50 = 12.09 ± 0.38 µM) and α-glucosidase (IC50 = 11.02 ± 0.04 µM) comparable to the reference drug acarbose. The results of the anti hyperglycemic activity were supported by means of in silico molecular docking calculations showing strong binding affinity of compounds 3a-h with human pancreatic α-amylase (HPA) and human lysosomal acid-α-glucosidase (HLAG) active sites that confirm a good to excellent activity for most of tested compounds.


Subject(s)
Antioxidants/pharmacology , Benzimidazoles/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism , Antioxidants/chemical synthesis , Antioxidants/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Biphenyl Compounds/antagonists & inhibitors , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Molecular Structure , Picrates/antagonists & inhibitors , Structure-Activity Relationship , alpha-Amylases/metabolism
13.
Nanoscale ; 13(14): 6786-6797, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33690747

ABSTRACT

The electron flow between a metallic aggregate and an organic molecule after excitation with light is a crucial step on which hybrid photovoltaic nanomaterials are based. So far, designing such devices with the help of theoretical approaches has been heavily limited by the computational cost of quantum dynamics models able to track the evolution of the excited states over time. In this article, we present the first application of the time-dependent density functional tight-binding (TD-DFTB) method for an experimental nanometer-sized gold-organic system consisting of a hexyl-protected Au25 cluster labelled with a pyrene fluorophore, in which the fluorescence quenching of the pyrene is attributed to the electron transfer from the metallic cluster to the dye. The full quantum rationalization of the electron transfer is attained through quantum dynamics simulations, highlighting the crucial role of the protecting ligand shell in electron transfer, as well as the coupling with nuclear movement. This work paves the way towards the fast and accurate theoretical design of optoelectronic nanodevices.

14.
Talanta ; 221: 121412, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33076057

ABSTRACT

Herein, we developed and designed a novel ratiometric optical chemisensor film for determining Al(III) and Cu(II) in low concentration ranges. The chemisensor film consists of (a) antibacterial drug Ciprofloxacin (CPFX) [1-cyclopropyl-6-fluoro1,4-dihydro-4-oxo-7-(piperaziny-l-yl) quinolone-3carboxylic acid] and (b) a reference dye 5,10,15,20- tetrakis (pentafluorophenyl) porphyrin (TFPP) in a polyvinyl chloride (PVC) matrix. PVC was applied as a homogeneous system for mixing CPFX and TFPP. The emission intensity of the CPFX in the PVC matrix varies depending on the concentrations of the Al(III) and Cu(II) ions. When the sensor film is immersed in different Al(III) concentrations, a significant fluorescence enhancement of the CPFX at (427 nm) is observed. Furthermore, the fluorescence intensity of the red emission of the TFPP dye at (644 nm) does not alter. However, in the presence of Cu(II) ions, a considerable emission quenching of the CPFX peak at (427 nm) is observed. PVC provides a great permeability and penetration facilities of dissolved ions that make the sensor film sensitive to Al(III) or Cu(II) changes outside the matrix. The film displays immense sensitivity depending on their distinctive optical characteristics of CPFX and detection capabilities within a low detection limit LOD for Al(III) and Cu(II). The LOD values were estimated to be 2.05 x 10-7 M and 1.04 x 10-7 M respectively with a relative standard deviation RSDr (1%, n=3). Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical calculations were performed to study Cu(II) and Al(III) complexation structures and their electronic properties in solution and in the sensor film. The interference of the chemisensor film was examined using different cations and the chemisensor provides significant selectivity. We develop a new ratiometric chemisensor based on PVC polymer film for Al(III) and Cu(II) detection.


Subject(s)
Copper , Pharmaceutical Preparations , Anti-Bacterial Agents , Ciprofloxacin , Polymers
15.
Bioorg Chem ; 104: 104270, 2020 11.
Article in English | MEDLINE | ID: mdl-32947132

ABSTRACT

In an effort to explore a new class of antidiabetic inhibitors, a new series of isoxazolidine and C-alkyl imine oxide derivatives scaffolds were designed, synthesized and fully characterized. The newly synthesized analogues were evaluated for their human pancreatic α-amylase (HPA) and human lysosomal acid-α-glucosidase (HLAG) inhibitory activities and have shown a higher potency than acarbose. The compounds 7b (23.1 ± 1.1 µM) and 7a (36.3 ± 1.6 µM) were identified as the potent HPA and HLAG inhibitors with inhibitory effect up to 9 and 21-fold higher than acarbose, respectively. Antihyperglycemic activity results were supported by molecular docking approach of the most potent compounds 7b and 7a showing stronger interactions with the active site of HPA and HLAG as well as by in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) profile suggesting their satisfactory oral druglikeness without toxic effect. Therefore, it can be concluded that both 7b and 7a can be used as effective lead molecules for the development of HPA and HLAG inhibitors for the management of T2DM.


Subject(s)
Drug Design , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Imines/pharmacology , Isoxazoles/pharmacology , Oxides/pharmacology , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Imines/chemical synthesis , Imines/chemistry , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Lysosomes/enzymology , Molecular Docking Simulation , Molecular Structure , Oxides/chemical synthesis , Oxides/chemistry , Pancreas/enzymology , Structure-Activity Relationship , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism
16.
Bioorg Chem ; 98: 103713, 2020 05.
Article in English | MEDLINE | ID: mdl-32151966

ABSTRACT

A series of novel isoxazolidines based on benzaldehyde derivatives have been synthesized from the cycloaddition of chiral menthone-based nitrone and allyl phenyl ethers. All synthetic compounds were assessed for their in vitro PPA, HPA and HLAG inhibitory activity. The results revealed that all targets exhibited better inhibitory effect against PPA (12.3 ± 0.4 < IC50 < 38.2 ± 0.9 µM), HPA (10.1 ± 0.4 < IC50 < 26.8 ± 0.2 µM) and HLAG (65.4 ± 1.2 < IC50 < 274.8 ± 1.1 µM) when compared with the reference inhibitor, acarbose (IC50 = 284.6 ± 0.3 µM for PPA, 296.6 ± 0.8 µM for HPA, 780.4 ± 0.3 µM for HLAG) with the highest PPA inhibitory activity was ascribed to compound 3g against both PPA and HPA, and 3b against HLAG enzymes, respectively. Structural activity relationships (SARs) were also established for all synthesized compounds and the interaction modes of the most potent inhibitors (3g for PPA and HPA, 3b for HLAG) and the active site with residues of three enzymes were confirmed through molecular docking studies. Furthermore, a combination of molecular docking analysis with the in vitro activities can help to improve prediction success and encourages the uses of some of these molecules as potential alternatives toward the modulation of T2D.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Isoxazoles/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism , Animals , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Molecular Docking Simulation , Molecular Structure , Pancreas/enzymology , Structure-Activity Relationship , Swine , alpha-Amylases/metabolism
17.
J Mol Model ; 25(3): 85, 2019 03 02.
Article in English | MEDLINE | ID: mdl-30826938

ABSTRACT

The authors have retracted this article [1] due to an error in obtaining permission to use the data generated at the Synchrotron SOLEIL. All authors agree to this retraction.

18.
PLoS One ; 13(11): e0207635, 2018.
Article in English | MEDLINE | ID: mdl-30452478

ABSTRACT

Since the early nineties, countless publications have been devoted to the study of possible uses of [60] fullerene (C60) and its derivatives in the fields of materials and nano-biomedical sciences. However, in spite of the importance of conformers notably from the pharmacological point of view, the cis/trans isomerization of C60 mono-adducts has been rarely seldom investigated. Here we present the results of DFT calculations of the structural, vibrational and NMR properties of both cis and trans isomers of fulleropyrrolidine mono-adduct obtained by photo-addition of glycine methyl ester to C60. Taken together, our results have shown that the cis isomer is more stable than the trans one. For the cis conformation, the simulated vibrational spectrum shows a more intense peak at 1298 cm-1. While 13C spectra revealed no significant differences between the two isomers as compared to experimental results, the calculated 1H chemical shifts show a significant difference between the two conformers in both the gas phase and in solution. The trans isomer presents a proton at 5.86 ppm, which is more deshielded than the proton of the cis conformer (5.24 ppm).


Subject(s)
Fullerenes/chemistry , Pyrrolidines/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Density Functional Theory , Isomerism , Models, Molecular , Molecular Conformation , Proton Magnetic Resonance Spectroscopy , Vibration
19.
J Mol Model ; 24(10): 272, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30187189

ABSTRACT

A detailed theoretical study of the various possible fragmentation reactions of the benzophenone radical cation was carried out for the first time. In the first step, we optimized the geometries of all the structures resulting from the fragmentation of this cation using density functional theory (DFT). Our calculations were performed in the gas phase using the aug-cc-pVTZ basis set and the PBE1PBE functional. We determined the optimized structural parameters and the harmonic and anharmonic frequencies. The energies corresponding to all the optimized molecules were recalculated using the coupled cluster method CCSD(T). Upon comparing the fragmentation reaction energies, we found that the principal reaction was that leading to C7H5O+ and ·C6H5. We were able to theoretically demonstrate the existence of different fragments of the benzophenone cation: CO, CO+·, ·C6H5, C6H5+, ·C7H5O, C7H5O+, biphenyl, and (biphenyl)+·, and we found that the main products of the fragmentation reactions of the benzophenone cation are C7H5O+ and (biphenyl)+·, which have been observed experimentally using slow photoelectron spectroscopy (SPES). Our theoretical results are in good agreement with the experimental results from benzophenone cation spectroscopy and fragmentation obtained using Benoît Soep's equipment at Synchrotron SOLEIL.

20.
J Mol Model ; 24(9): 270, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30178198

ABSTRACT

In this paper, we perform the synthesization of carbon nanoparticles for active principle vectorization, with the suggestion of a reaction mechanism of tryptophan methyl ester addition on [60]fullerene. Firstly, we studied the effect of tryptophan form on its addition reaction on [60]fullerene. So, in order to determine the preferred environment that makes this reaction the most favorable, we considered all tryptophan possible forms in our investigation: the molecular, the zwitterionic, and the dibasic forms. Secondly, we investigate the proposed reaction mechanism of tryptophan methyl ester addition on [60]fullerene using theoretical thermodynamic calculation. Our hypothesis suggests the formation of azomethine ylide molecule in a first step followed by its addition on [60]fullerene in the second step by the photo-addition reaction involving the oxygen in its singlet state. The stability of each reactive intermediate involved in this mechanism is verified thermodynamically. The 12 most stable conformations of azomethine ylide were observed through potential energy surface analysis. They were obtained by a relaxed scan of the four dihedral angles. The calculations were conducted on the optimized geometry of fulleropyrrolidine mono-adduct and the bulk values of its thermodynamic constants were also determined. Infrared spectra observed in 100-4000 cm-1 region confirmed our hypothesis suggesting the first step of azomethine ylide formation followed by the second step of azomethine ylide addition on [60]fullerene by ν(Caliphatic-C-N), ν(Caromatic-C-N) and δ(N-H) coupled with ν(C-N) absorption bond. Graphical abstract Optimized geometry of the Fulleropyrrolidine monoaduct molecule.

SELECTION OF CITATIONS
SEARCH DETAIL
...