Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters










Publication year range
1.
Plant Cell Physiol ; 65(4): 644-656, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38591346

ABSTRACT

The function of ascorbate peroxidase-related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.


Subject(s)
Ascorbate Peroxidases , Chlamydomonas reinhardtii , Mutation , Plastocyanin , Plastocyanin/metabolism , Plastocyanin/genetics , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Copper/metabolism , Oxidation-Reduction , Photosystem I Protein Complex/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Cytochromes c6/metabolism , Cytochromes c6/genetics , Proteomics/methods , Light
2.
Int J Pharm ; 657: 124132, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38641019

ABSTRACT

Targeting enzymes involved in lipid metabolism is increasingly recognized as a promising anticancer strategy. Efficient inhibition of diacylglycerol O-transferase 1 (DGAT1) can block fatty acid (FA) storage. This, in turn, triggers an increase in free polyunsaturated FA concentration, leading to peroxidation and ferroptosis. In this study, we report the development of a pH-sensitive peptide (pHLIP)-drug conjugate designed to selectively deliver DGAT1 inhibitors to cancer cells nested within the acidic microenvironment of tumors. We utilized two previously established pHLIP sequences for coupling with drugs. The study of DGAT1 conjugates in large unilamellar vesicles (LUVs) of different compositions did not reveal enhanced pH-dependent insertion compared to POPC LUVs. However, using in vitro 3D tumor spheroids, significant antiproliferative effects were observed upon exposure to pHLIP-T863 (DGAT1 inhibitor) conjugates, surpassing the inhibitory activity of T863 alone. In conclusion, our study provides the first evidence that pHLIP-based conjugates with DGAT1 inhibitors have the potential to specifically target the acidic compartment of tumors. Moreover, it sheds light on the limitations of LUV models in capturing the pH-dependency of such conjugates.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Diacylglycerol O-Acyltransferase , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Humans , Hydrogen-Ion Concentration , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Peptides/chemistry , Peptides/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Spheroids, Cellular/drug effects , Tumor Microenvironment/drug effects , Membrane Proteins
3.
Redox Biol ; 70: 103058, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38310683

ABSTRACT

A multitude of cellular metabolic and regulatory processes rely on controlled thiol reduction and oxidation mechanisms. Due to our aerobic environment, research preferentially focuses on oxidation processes, leading to limited tools tailored for investigating cellular reduction. Here, we advocate for repurposing HyPer1, initially designed as a fluorescent probe for H2O2 levels, as a tool to measure the reductive power in various cellular compartments. The response of HyPer1 depends on kinetics between thiol oxidation and reduction in its OxyR sensing domain. Here, we focused on the reduction half-reaction of HyPer1. We showed that HyPer1 primarily relies on Trx/TrxR-mediated reduction in the cytosol and nucleus, characterized by a second order rate constant of 5.8 × 102 M-1s-1. On the other hand, within the mitochondria, HyPer1 is predominantly reduced by glutathione (GSH). The GSH-mediated reduction rate constant is 1.8 M-1s-1. Using human leukemia K-562 cells after a brief oxidative exposure, we quantified the compartmentalized Trx/TrxR and GSH-dependent reductive activity using HyPer1. Notably, the recovery period for mitochondrial HyPer1 was twice as long compared to cytosolic and nuclear HyPer1. After exploring various human cells, we revealed a potent cytosolic Trx/TrxR pathway, particularly pronounced in cancer cell lines such as K-562 and HeLa. In conclusion, our study demonstrates that HyPer1 can be harnessed as a robust tool for assessing compartmentalized reduction activity in cells following oxidative stress.


Subject(s)
Hydrogen Peroxide , Thioredoxin-Disulfide Reductase , Humans , Hydrogen Peroxide/metabolism , Thioredoxin-Disulfide Reductase/metabolism , Oxidation-Reduction , Glutathione/metabolism , Cell Line, Tumor , Sulfhydryl Compounds , Thioredoxins/metabolism
4.
J Cell Biol ; 222(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-37956386

ABSTRACT

Current models posit that nuclear speckles (NSs) serve as reservoirs of splicing factors and facilitate posttranscriptional mRNA processing. Here, we discovered that ribotoxic stress induces a profound reorganization of NSs with enhanced recruitment of factors required for splice-site recognition, including the RNA-binding protein TIAR, U1 snRNP proteins and U2-associated factor 65, as well as serine 2 phosphorylated RNA polymerase II. NS reorganization relies on the stress-activated p38 mitogen-activated protein kinase (MAPK) pathway and coincides with splicing activation of both pre-existing and newly synthesized pre-mRNAs. In particular, ribotoxic stress causes targeted excision of retained introns from pre-mRNAs of immediate early genes (IEGs), whose transcription is induced during the stress response. Importantly, enhanced splicing of the IEGs ZFP36 and FOS is accompanied by relocalization of the corresponding nuclear mRNA foci to NSs. Our study reveals NSs as a dynamic compartment that is remodeled under stress conditions, whereby NSs appear to become sites of IEG transcription and efficient cotranscriptional splicing.


Subject(s)
Genes, Immediate-Early , Nuclear Speckles , RNA Splicing , Introns , Ribonucleoprotein, U1 Small Nuclear/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans
5.
Antioxidants (Basel) ; 12(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38001799

ABSTRACT

Recent phylogenetic studies have unveiled a novel class of ascorbate peroxidases called "ascorbate peroxidase-related" (APX-R). These enzymes, found in green photosynthetic eukaryotes, lack the amino acids necessary for ascorbate binding. This study focuses on the sole APX-R from Chlamydomonas reinhardtii referred to as ascorbate peroxidase 2 (APX2). We used immunoblotting to locate APX2 within the chloroplasts and in silico analysis to identify key structural motifs, such as the twin-arginine transport (TAT) motif for lumen translocation and the metal-binding MxxM motif. We also successfully expressed recombinant APX2 in Escherichia coli. Our in vitro results showed that the peroxidase activity of APX2 was detected with guaiacol but not with ascorbate as an electron donor. Furthermore, APX2 can bind both copper and heme, as evidenced by spectroscopic, and fluorescence experiments. These findings suggest a potential interaction between APX2 and plastocyanin, the primary copper-containing enzyme within the thylakoid lumen of the chloroplasts. Predictions from structural models and evidence from 1H-NMR experiments suggest a potential interaction between APX2 and plastocyanin, emphasizing the influence of APX2 on the copper-binding abilities of plastocyanin. In summary, our results propose a significant role for APX2 as a regulator in copper transfer to plastocyanin. This study sheds light on the unique properties of APX-R enzymes and their potential contributions to the complex processes of photosynthesis in green algae.

6.
Free Radic Biol Med ; 194: 220-229, 2023 01.
Article in English | MEDLINE | ID: mdl-36493985

ABSTRACT

Deep learning algorithms such as AlphaFold2 predict three-dimensional protein structure with high confidence. The recent release of more than 200 million structural models provides an unprecedented resource for functional protein annotation. Here, we used AlphaFold2 predicted structures of fifteen plant proteomes to functionally and evolutionary analyze cysteine residues in the plant kingdom. In addition to identification of metal ligands coordinated by cysteine residues, we systematically analyzed cysteine disulfides present in these structural predictions. Our analysis demonstrates most of these predicted disulfides are trustworthy due their high agreement (∼96%) with those present in X-ray and NMR protein structures, their characteristic disulfide stereochemistry, the biased subcellular distribution of their proteins and a higher degree of oxidation of their respective cysteines as measured by proteomics. Adopting an evolutionary perspective, zinc binding sites are increasingly present at the expense of iron-sulfur clusters in plants. Interestingly, disulfide formation is increased in secreted proteins of land plants, likely promoting sequence evolution to adapt to changing environments encountered by plants. In summary, Alphafold2 predicted structural models are a rich source of information for studying the role of cysteines residues in proteins of interest and for protein redox biology in general.


Subject(s)
Cysteine , Cystine , Cysteine/metabolism , Cystine/metabolism , Binding Sites , Disulfides/metabolism , Proteome/metabolism , Oxidation-Reduction
7.
Int J Pharm ; 624: 122041, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35868479

ABSTRACT

Targeting enzymes involved in tumor metabolism is a promising way to tackle cancer progression. The inhibition of carnitine palmitoyltransferase 1 (CPT1) by etomoxir (Eto) efficiently slows down the growth of various cancers. Unfortunately, the clinical use of this drug was abandoned because of hepatotoxic effects. We report the development of pH-sensitive peptide (pHLIP)-drug conjugate to deliver Eto selectively to cancer cells exposed to acidic microenvironmental conditions. A newly designed sequence for the pHLIP peptide, named pHLIPd, was compared with a previously published reference pHLIP peptide, named pHLIPr. We showed that the conjugate between pHLIPd and Eto has a better pH-dependent insertion and structuration than the pHLIPr-based conjugate inside POPC vesicles. We observed antiproliferative effects when applied on acid-adapted cancer cells, reaching a larger inhibitory activity than Eto alone. In conclusion, this study brings the first evidence that pHLIP-based conjugates with a CPT1 inhibitor has the potential to specifically target the tumor acidic compartment and exert anticancer effects while sparing healthy tissues.


Subject(s)
Acidosis , Neoplasms , Carnitine O-Palmitoyltransferase , Epoxy Compounds , Humans , Hydrogen-Ion Concentration , Neoplasms/drug therapy , Peptides/pharmacology
8.
Biochem J ; 479(12): 1317-1336, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35670459

ABSTRACT

Pharmacological AMPK activation represents an attractive approach for the treatment of type 2 diabetes (T2D). AMPK activation increases skeletal muscle glucose uptake, but there is controversy as to whether AMPK activation also inhibits hepatic glucose production (HGP) and pharmacological AMPK activators can have off-target effects that contribute to their anti-diabetic properties. The main aim was to investigate the effects of 991 and other direct AMPK activators on HGP and determine whether the observed effects were AMPK-dependent. In incubated hepatocytes, 991 substantially decreased gluconeogenesis from lactate, pyruvate and glycerol, but not from other substrates. Hepatocytes from AMPKß1-/- mice had substantially reduced liver AMPK activity, yet the inhibition of glucose production by 991 persisted. Also, the glucose-lowering effect of 991 was still seen in AMPKß1-/- mice subjected to an intraperitoneal pyruvate tolerance test. The AMPK-independent mechanism by which 991 treatment decreased gluconeogenesis could be explained by inhibition of mitochondrial pyruvate uptake and inhibition of mitochondrial sn-glycerol-3-phosphate dehydrogenase-2. However, 991 and new-generation direct small-molecule AMPK activators antagonized glucagon-induced gluconeogenesis in an AMPK-dependent manner. Our studies support the notion that direct pharmacological activation of hepatic AMPK as well as inhibition of pyruvate uptake could be an option for the treatment of T2D-linked hyperglycemia.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon/metabolism , Gluconeogenesis , Glucose/metabolism , Lactic Acid/metabolism , Liver/metabolism , Mice , Pyruvic Acid/metabolism
9.
Nat Commun ; 13(1): 171, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013284

ABSTRACT

The lack of tools to monitor the dynamics of (pseudo)hypohalous acids in live cells and tissues hinders a better understanding of inflammatory processes. Here we present a fluorescent genetically encoded biosensor, Hypocrates, for the visualization of (pseudo)hypohalous acids and their derivatives. Hypocrates consists of a circularly permuted yellow fluorescent protein integrated into the structure of the transcription repressor NemR from Escherichia coli. We show that Hypocrates is ratiometric, reversible, and responds to its analytes in the 106 M-1s-1 range. Solving the Hypocrates X-ray structure provided insights into its sensing mechanism, allowing determination of the spatial organization in this circularly permuted fluorescent protein-based redox probe. We exemplify its applicability by imaging hypohalous stress in bacteria phagocytosed by primary neutrophils. Finally, we demonstrate that Hypocrates can be utilized in combination with HyPerRed for the simultaneous visualization of (pseudo)hypohalous acids and hydrogen peroxide dynamics in a zebrafish tail fin injury model.


Subject(s)
Animal Fins/diagnostic imaging , Bacterial Proteins/genetics , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Hypochlorous Acid/analysis , Luminescent Proteins/genetics , Animal Fins/injuries , Animal Fins/metabolism , Animals , Bacterial Proteins/metabolism , Biosensing Techniques/instrumentation , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Genes, Reporter , Hydrogen Peroxide/chemistry , Hypochlorous Acid/chemical synthesis , Hypochlorous Acid/metabolism , Luminescent Proteins/metabolism , Neutrophils/cytology , Neutrophils/immunology , Oxidation-Reduction , Phagocytosis , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish
10.
Redox Biol ; 46: 102066, 2021 10.
Article in English | MEDLINE | ID: mdl-34340028

ABSTRACT

Hydrogen peroxide (H2O2) acts as a signalling molecule by oxidising cysteine thiols in proteins. Recent evidence has established a role for cytosolic peroxiredoxins in transmitting H2O2-based oxidation to a multitude of target proteins. Moreover, it is becoming clear that peroxiredoxins fulfil their function in organised microdomains, where not all interactors are covalently bound. However, most studies aimed at identifying peroxiredoxin interactors were based on methods that only detect covalently linked partners. Here, we explore the applicability of two thiol-disulphide independent in-cell trapping methodological approaches in combination with mass spectrometry for the identification of interaction partners of peroxiredoxin 2 (Prdx2). The first is biotin-dependent proximity-labelling (BioID) with a biotin ligase A (BirA*)-fused Prdx2, which has never been applied on redox-active proteins. The second is crosslinker co-immunoprecipitation with an N-terminally His-tagged Prdx2. During the initial characterisation of the tagged Prdx2 constructs, we found that the His-tag, but not BirA*, compromises the peroxidase and signalling activities of Prdx2. Further, the Prdx2 interactors identified with each approach showed little overlap. We therefore concluded that BioID is a more reliable method than crosslinker co-immunoprecipitation. After a stringent mass spec data filtering, BioID identified 13 interactors under elevated H2O2 conditions, including subunit five of the COP9 signalosome complex (CSN5). The Prdx2:CSN5 interaction was further confirmed in a proximity ligation assay. Taken together, our results demonstrate that BioID can be used as a method for the identification of interactors of Prdxs, and that caution should be exercised when interpreting protein-protein interaction results using tagged Prdxs.


Subject(s)
Peroxiredoxins , Sulfhydryl Compounds , Disulfides , Hydrogen Peroxide , Oxidation-Reduction , Peroxiredoxins/genetics , Peroxiredoxins/metabolism
11.
Antioxidants (Basel) ; 10(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209102

ABSTRACT

Hydrogen peroxide (H2O2) is a key redox signaling molecule that selectively oxidizes cysteines on proteins. It can accomplish this even in the presence of highly efficient and abundant H2O2 scavengers, peroxiredoxins (Prdxs), as it is the Prdxs themselves that transfer oxidative equivalents to specific protein thiols on target proteins via their redox-relay functionality. The first evidence of a mammalian cytosolic Prdx-mediated redox-relay-Prdx1 with the kinase ASK1-was presented a decade ago based on the outcome of a co-immunoprecipitation experiment. A second such redox-relay-Prdx2:STAT3-soon followed, for which further studies provided insights into its specificity, organization, and mechanism. The Prdx1:ASK1 redox-relay, however, has never undergone such a characterization. Here, we combine cellular and in vitro protein-protein interaction methods to investigate the Prdx1:ASK1 interaction more thoroughly. We show that, contrary to the Prdx2:STAT3 redox-relay, Prdx1 interacts with ASK1 at elevated H2O2 concentrations, and that this interaction can happen independently of a scaffolding protein. We also provide evidence of a Prdx2:ASK1 interaction, and demonstrate that it requires a facilitator that, however, is not annexin A2. Our results reveal that cytosolic Prdx redox-relays can be organized in different ways and yet again highlight the differentiated roles of Prdx1 and Prdx2.

12.
Redox Biol ; 42: 101959, 2021 06.
Article in English | MEDLINE | ID: mdl-33895094

ABSTRACT

Peroxiredoxins (Prdxs) sense and assess peroxide levels, and signal through protein interactions. Understanding the role of the multiple structural and post-translational modification (PTM) layers that tunes the peroxiredoxin specificities is still a challenge. In this review, we give a tabulated overview on what is known about human and bacterial peroxiredoxins with a focus on structure, PTMs, and protein-protein interactions. Armed with numerous cellular and atomic level experimental techniques, we look at the future and ask ourselves what is still needed to give us a clearer view on the cellular operating power of Prdxs in both stress and non-stress conditions.


Subject(s)
Peroxides , Peroxiredoxins , Humans , Hydrogen Peroxide , Oxidation-Reduction , Peroxiredoxins/metabolism , Personality , Signal Transduction
13.
J Immunol ; 206(8): 1901-1912, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33753427

ABSTRACT

Neutrophils are often the major leukocyte at sites of mycobacterial infection, yet little is known about their ability to kill mycobacteria. In this study we have investigated whether the potent antibacterial oxidant hypochlorous acid (HOCl) contributes to killing of Mycobacterium smegmatis when this bacterium is phagocytosed by human neutrophils. We found that M. smegmatis were ingested by neutrophils into intracellular phagosomes but were killed slowly. We measured a t 1/2 of 30 min for the survival of M. smegmatis inside neutrophils, which is 5 times longer than that reported for Staphylococcus aureus and 15 times longer than Escherichia coli Live-cell imaging indicated that neutrophils generated HOCl in phagosomes containing M. smegmatis; however, inhibition of HOCl production did not alter the rate of bacterial killing. Also, the doses of HOCl that are likely to be produced inside phagosomes failed to kill isolated bacteria. Lethal doses of reagent HOCl caused oxidation of mycothiol, the main low-m.w. thiol in this bacterium. In contrast, phagocytosed M. smegmatis maintained their original level of reduced mycothiol. Collectively, these findings suggest that M. smegmatis can cope with the HOCl that is produced inside neutrophil phagosomes. A mycothiol-deficient mutant was killed by neutrophils at the same rate as wild-type bacteria, indicating that mycothiol itself is not the main driver of M. smegmatis resistance. Understanding how M. smegmatis avoids killing by phagosomal HOCl could provide new opportunities to sensitize pathogenic mycobacteria to destruction by the innate immune system.


Subject(s)
Anti-Bacterial Agents/metabolism , Hypochlorous Acid/metabolism , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium smegmatis/physiology , Neutrophils/metabolism , Phagosomes/metabolism , Cells, Cultured , Cysteine/metabolism , Glycopeptides/metabolism , Humans , Immune Evasion , Immunity, Innate , Inositol/metabolism , Mycobacterium Infections, Nontuberculous/microbiology , Neutrophils/immunology , Phagocytosis
14.
J Am Chem Soc ; 143(6): 2500-2508, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33529004

ABSTRACT

Electrostatic forces are important for protein folding and are favored targets of protein engineering. However, interactions between charged residues are difficult to study because of the complex network of interactions found in most proteins. We have designed a purposely simple system to investigate this problem by systematically introducing individual and pairs of charged and titratable residues in a protein otherwise free of such residues. We used constant pH molecular dynamics simulations, NMR spectroscopy, and thermodynamic double mutant cycles to probe the structure and energetics of the interaction between the charged residues. We found that the partial burial of surface charges contributes to a shift in pKa value, causing an aspartate to titrate in the neutral pH range. Additionally, the interaction between pairs of residues was found to be highly context dependent, with some pairs having no apparent preferential interaction, while other pairs would engage in coupled titration forming a highly stabilized salt bridge. We find good agreement between experiments and simulations and use the simulations to rationalize our observations and to provide a detailed mechanistic understanding of the electrostatic interactions.


Subject(s)
Cellulase/chemistry , Static Electricity , Aspartic Acid/chemistry , Cellulase/genetics , Cellulomonas/enzymology , Histidine/chemistry , Molecular Dynamics Simulation , Mutation , Protein Conformation , Protein Domains/genetics , Protein Unfolding , Thermodynamics
15.
J Biol Chem ; 296: 100422, 2021.
Article in English | MEDLINE | ID: mdl-33607109

ABSTRACT

Despite being initially regarded as a metabolic waste product, lactate is now considered to serve as a primary fuel for the tricarboxylic acid cycle in cancer cells. At the core of lactate metabolism, lactate dehydrogenases (LDHs) catalyze the interconversion of lactate to pyruvate and as such represent promising targets in cancer therapy. However, direct inhibition of the LDH active site is challenging from physicochemical and selectivity standpoints. However, LDHs are obligate tetramers. Thus, targeting the LDH tetrameric interface has emerged as an appealing strategy. In this work, we examine a dimeric construct of truncated human LDH to search for new druggable sites. We report the identification and characterization of a new cluster of interactions in the LDH tetrameric interface. Using nanoscale differential scanning fluorimetry, chemical denaturation, and mass photometry, we identified several residues (E62, D65, L71, and F72) essential for LDH tetrameric stability. Moreover, we report a family of peptide ligands based on this cluster of interactions. We next demonstrated these ligands to destabilize tetrameric LDHs through binding to this new tetrameric interface using nanoscale differential scanning fluorimetry, NMR water-ligand observed via gradient spectroscopy, and microscale thermophoresis. Altogether, this work provides new insights on the LDH tetrameric interface as well as valuable pharmacological tools for the development of LDH tetramer disruptors.


Subject(s)
Epitope Mapping/methods , L-Lactate Dehydrogenase/metabolism , Humans , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/physiology , Lactate Dehydrogenases/metabolism , Lactic Acid/metabolism , Ligands , Magnetic Resonance Imaging/methods , Peptides/metabolism
16.
Antioxidants (Basel) ; 10(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430242

ABSTRACT

Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide, thus minimizing cell injury and modulating signaling pathways as response to this reactive oxygen species. Using a phylogenetic approach, we previously identified a new peroxidase family composed of a small subset of ascorbate peroxidase (APx) homologs with distinguished features, which we named ascorbate peroxidase-related (APx-R). In this study, we showed that APx-R is an ascorbate-independent heme peroxidase. Despite being annotated as a cytosolic protein in public databases, transient expression of AtAPx-R-YFP in Arabidopsis thaliana protoplasts and stable overexpression in plants showed that the protein is targeted to plastids. To characterize APx-R participation in the antioxidant metabolism, we analyzed loss-of-function mutants and AtAPx-R overexpressing lines. Molecular analysis showed that glutathione peroxidase 7 (GPx07) is specifically induced to compensate the absence of APx-R. APx-R overexpressing lines display faster germination rates, further confirming the involvement of APx-R in seed germination. The constitutive overexpression of AtAPx-R-YFP unraveled the existence of a post-translational mechanism that eliminates APx-R from most tissues, in a process coordinated with photomorphogenesis. Our results show a direct role of APx-R during germinative and post-germinative development associated with etioplasts differentiation.

17.
Cell Rep ; 33(3): 108292, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33086068

ABSTRACT

Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies.


Subject(s)
Calcium/metabolism , Stromal Interaction Molecule 2/metabolism , Calcium Channels/metabolism , Calcium Signaling , Cell Line, Tumor , Cysteine/metabolism , Humans , Intracellular Calcium-Sensing Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/genetics , Stromal Interaction Molecule 2/physiology
18.
Sci Rep ; 10(1): 15765, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978409

ABSTRACT

The proteasome is responsible for selective degradation of proteins. It exists in mammalian cells under four main subtypes, which differ by the combination of their catalytic subunits: the standard proteasome (ß1-ß2-ß5), the immunoproteasome (ß1i-ß2i-ß5i) and the two intermediate proteasomes (ß1-ß2-ß5i and ß1i-ß2-ß5i). The efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins remains unclear. Using cells expressing exclusively one proteasome subtype, we observed that ubiquitinated p21 and c--myc were degraded at similar rates, indicating that the four 26S proteasomes degrade ubiquitinated proteins equally well. Under oxidative stress, we observed a partial dissociation of 26S into 20S proteasomes, which can degrade non-ubiquitinated oxidized proteins. Oxidized calmodulin and hemoglobin were best degraded in vitro by the three ß5i-containing 20S proteasomes, while their native forms were not degraded. Circular dichroism analyses indicated that ubiquitin-independent recognition of oxidized proteins by 20S proteasomes was triggered by the disruption of their structure. Accordingly, ß5i-containing 20S proteasomes degraded unoxidized naturally disordered protein tau, while 26S proteasomes did not. Our results suggest that the three ß5i-containing 20S proteasomes, namely the immunoproteasome and the two intermediate proteasomes, might help cells to eliminate proteins containing disordered domains, including those induced by oxidative stress.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitination , Cyclin-Dependent Kinase Inhibitor p21/metabolism , HEK293 Cells , Humans , Oxidation-Reduction , Proto-Oncogene Proteins c-myc/metabolism
19.
Nat Commun ; 11(1): 4512, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908147

ABSTRACT

Hydrogen peroxide (H2O2) is recognized to act as a signaling molecule. Peroxiredoxins (Prxs) have the ability to transfer H2O2-derived oxidizing equivalents to redox-regulated target proteins, thus facilitating the transmission of H2O2 signals. It has remained unclear how Prxs and their target proteins are brought together to allow for target-specific protein thiol oxidation. Addressing the specific case of Prx2-dependent STAT3 oxidation, we here show that the association of the two proteins occurs prior to Prx oxidation and depends on a scaffolding protein, the membrane chaperone annexin A2. Deletion or depletion of annexin A2 interrupts the transfer of oxidizing equivalents from Prx2 to STAT3, which is observed to take place on membranes. These findings support the notion that the Prx2-STAT3 redox relay is part of a highly organized membrane signaling domain.


Subject(s)
Annexin A2/metabolism , Peroxiredoxins/metabolism , STAT3 Transcription Factor/metabolism , Annexin A2/genetics , Cell Line, Tumor , Cell Membrane/metabolism , Disulfides/metabolism , HEK293 Cells , Humans , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Protein Binding , Protein Domains , Signal Transduction
20.
Plant Physiol ; 184(2): 676-692, 2020 10.
Article in English | MEDLINE | ID: mdl-32826321

ABSTRACT

Heat stress induces misfolding and aggregation of proteins unless they are guarded by chaperone systems. Here, we examined the function of the glutaredoxin GRXS17, a member of thiol reductase families in the model plant Arabidopsis (Arabidopsis thaliana). GRXS17 is a nucleocytosolic monothiol glutaredoxin consisting of an N-terminal thioredoxin domain and three CGFS active-site motif-containing GRX domains that coordinate three iron-sulfur (Fe-S) clusters in a glutathione-dependent manner. As an Fe-S cluster-charged holoenzyme, GRXS17 is likely involved in the maturation of cytosolic and nuclear Fe-S proteins. In addition to its role in cluster biogenesis, GRXS17 presented both foldase and redox-dependent holdase activities. Oxidative stress in combination with heat stress induced loss of its Fe-S clusters followed by subsequent formation of disulfide bonds between conserved active-site cysteines in the corresponding thioredoxin domains. This oxidation led to a shift of GRXS17 to a high-molecular-weight complex and thus activated its holdase activity in vitro. Moreover, GRXS17 was specifically involved in plant tolerance to moderate high temperature and protected root meristematic cells from heat-induced cell death. Finally, GRXS17 interacted with a different set of proteins upon heat stress, possibly protecting them from heat injuries. Therefore, we propose that the Fe-S cluster enzyme GRXS17 is an essential guard that protects proteins against moderate heat stress, likely through a redox-dependent chaperone activity. We reveal the mechanism of an Fe-S cluster-dependent activity shift that converts the holoenzyme GRXS17 into a holdase, thereby preventing damage caused by heat stress.


Subject(s)
Arabidopsis Proteins/metabolism , Glutaredoxins/metabolism , Heat-Shock Response , Oxidative Stress , Thermotolerance , Arabidopsis , Arabidopsis Proteins/genetics , Glutaredoxins/genetics , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...