Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(4): 1276-88, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24450589

ABSTRACT

Tuberculosis (TB) is one of the world's oldest and deadliest diseases, killing a person every 20 s. InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis, is the target of the frontline antitubercular drug isoniazid (INH). Compounds that directly target InhA and do not require activation by mycobacterial catalase peroxidase KatG are promising candidates for treating infections caused by INH resistant strains. The application of the encoded library technology (ELT) to the discovery of direct InhA inhibitors yielded compound 7 endowed with good enzymatic potency but with low antitubercular potency. This work reports the hit identification, the selected strategy for potency optimization, the structure-activity relationships of a hundred analogues synthesized, and the results of the in vivo efficacy studies performed with the lead compound 65.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Discovery , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Mycobacterium tuberculosis/metabolism , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...