Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Clin Pediatr Dent ; 47(5): 73-80, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37732439

ABSTRACT

The American Academy of Pediatric Dentistry (AAPD) affirms that the use of fluoride, as an adjunct in the prevention of caries, is safe and effective. The AAPD encourages dentists, other healthcare providers, and parents to optimize fluoride exposures to reduce the risk of caries and to enhance the remineralization of affected teeth. However, there is resistance amongst patients towards fluoride overexposure and despite there being research on other effective remineralizing agents, most pediatric dentists primarily cater their practice to fluoride-based products. The objective of the study is to survey pediatric dentists' acceptance and awareness of fluoride-free remineralizing agents. A listserv of the southeastern and western private practice pediatric dentists was obtained from the AAPD consisting of 6490 email addresses. A questionnaire consisting of 15 questions was sent to each address using Qualtrics. Different trends in fluoride-free acceptance and awareness were seen based on region of practice, region of training and age of practitioner. Region of practice, residency training and age can be contributing factors toward fluoride-free remineralizing agent opinion. The data gathered trends towards western-trained pediatric dentists are more likely to recommend a fluoride-free toothpaste than a southeastern-trained dentist.


Subject(s)
Dental Caries , Toothpastes , Child , Humans , Dentists , Fluorides , Dental Care , Dental Caries/prevention & control , Private Practice
2.
J Biomed Mater Res A ; 106(9): 2433-2439, 2018 09.
Article in English | MEDLINE | ID: mdl-29682887

ABSTRACT

Corrosion and release of nickel ions from biomedical alloys are well documented, but little is still known about the effects of released nickel ions on cellular function with recurrent inflammatory challenges. Evidence suggests Ni(II) ions amplify LPS-induced secretion of several pro-inflammatory cytokines from monocytes. Exacerbating the inflammatory response, hyperglycemic conditions also affect monocytic function. This study investigated how Ni(II) and hyperglycemic conditions, both singly and in combination, alter monocyte proliferation, mitochondrial activity, inflammatory responses, and differentiation. Results showed that Ni(II) did not affect proliferation, but decreased mitochondrial activity in monocytic-cells and macrophages under normal conditions. However, hyperglycemic conditions negated the toxicity seen with Ni(II) exposure. Cytokine secretion in response to LPS was variable, with little effect on IL6 secretion, but significantly increased secretion of IL1ß at intermediate Ni(II) concentrations. Hyperglycemic conditions did not alter these results significantly. Finally, exposure to eluants from nickel-based commercial alloys caused enhanced IL1ß secretion from PMA-treated cells. These data suggest that corrosion products from nickel-containing dental alloys increased Ni(II)-induced changes in cytokine secretion by monocytes and macrophages. By better defining the effects of Ni(II) at these lower, biomedically relevant concentrations, we improve understanding of the biomedical alloy risk in the context of dental inflammation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2433-2439, 2018.


Subject(s)
Glucose/toxicity , Macrophages/pathology , Monocytes/pathology , Nickel/pharmacology , Cell Count , Cell Differentiation/drug effects , Humans , Ions , Macrophages/drug effects , Monocytes/drug effects , Succinate Dehydrogenase/metabolism , THP-1 Cells
3.
Article in English | MEDLINE | ID: mdl-27039006

ABSTRACT

OBJECTIVES: The objective of this study was to evaluate the baseline differences between alveolar and basal areas of the rat mandible. STUDY DESIGN: Rat mandibular alveolar and basal bones were evaluated using histology and micro-computed tomography to compare osteocyte number as well as bone density and architecture and polymerase chain reaction to measure gene expression levels. RESULTS: Micro-computed tomography data indicated that basal bone is denser and less porous than alveolar bone. Histologic analysis showed that alveolar bone has more osteocytes per unit area compared with basal bone. Real-time polymerase chain reaction results showed higher levels of expression of the following genes in basal bone than in alveolar bone: SOST, E-11, DMP-1, and MEPE. CONCLUSIONS: Three of these gene products are associated with mature osteocytes, and this suggests that basal bone has more mature osteocyte phenotypes compared with alveolar bone. These findings are suggestive of fewer bone mineralization units and therefore a slower remodeling rate.


Subject(s)
Gene Expression , Mandible/anatomy & histology , Mandible/diagnostic imaging , Animals , Bone Density/genetics , Bone Morphogenetic Proteins/genetics , Calcification, Physiologic/genetics , Extracellular Matrix Proteins/genetics , Genetic Markers/genetics , Glycoproteins/genetics , Male , Membrane Glycoproteins/genetics , Osteocytes/cytology , Phenotype , Phosphoproteins/genetics , Polymerase Chain Reaction , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
4.
Anticancer Res ; 34(11): 6305-13, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25368229

ABSTRACT

BACKGROUND: Recent studies suggest that light in the UVA range (320-400 nm) activates signaling pathways that are anti-inflammatory, antioxidative and play a critical role in protection against cancer. These effects have been attributed to NF-E2-related factor (NRF2)-mediated up-regulation of 'phase 2' genes that neutralize oxidative stress and metabolize electrophiles. We had previously shown that small doses of blue light (400-500 nm) had selective toxicity for cultured oral tumor cells and increased levels of peroxiredoxin phase 2 proteins, which led to our hypothesis that blue light activates NRF2 signaling. MATERIALS AND METHODS: A431 epidermoid carcinoma cells were treated in culture and as nude mouse xenografts with doses of blue light. Cell lysates and tumor samples were tested for NRF2 activation, and for markers of proliferation and oxidative stress. RESULTS: Blue light activated the phase 2 response in cultured A431 cells and reduced their viability dose dependently. Light treatment of tumors reduced tumor growth, and levels of proliferating cell nuclear antigen (PCNA), and oxidized proteins. DISCUSSION: Cellular responses to these light energies are worth further study and may provide therapeutic interventions for inflammation and cancer.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Proliferation/radiation effects , Heme Oxygenase-1/metabolism , Light , NF-E2-Related Factor 2/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Animals , Apoptosis/radiation effects , Blotting, Western , Carcinoma, Squamous Cell/radiotherapy , Female , Humans , Mice , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
J Clin Periodontol ; 40(7): 661-71, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23560813

ABSTRACT

AIM: Test whether human periodontal ligament fibroblasts (PDLFs) retain homeostatic responses to a physiological compressive force during chronic periodontitis. MATERIAL AND METHODS: Six cell lines were established from periodontally healthy individuals (H-PDLFs) and another six were cultured from patients diagnosed with chronic periodontitis (D-PDLFs). Compressive force at 150 psi was applied to H-and D-PDLFs for 3 h on 2 consecutive days. After compression, comparisons between H-and D-PDLFs were performed by gene expression analysis of IL-6, proteases and 84 inflammation-related targets using real-time PCR. RESULTS: Compression of H-PDLFs resulted in a significant increase only in MMP-1 mRNA. In contrast, the same compressive force on D-PDLFs produced significant increases in the expression of MMPs-1,-7,-9 and -16. Moreover, compression of H-PDLFs resulted in down-regulation of IL-6, while IL-6 was significantly up-regulated in compressed D-PDLFs. Compression of H-PDLFs slightly up-regulated 3 and significantly down-regulated 15 inflammation-related genes, while the same treatment strongly up-regulated 21 inflammation-related genes in D-PDLFs. CONCLUSION: These results suggest a fundamental difference in the inflammatory response of healthy versus diseased PDLFs under physiological compression. Maintenance of these characteristics in vitro suggests that these cells may be at least partly responsible for the persistence of inflammation and localized susceptibility in chronic periodontitis.


Subject(s)
Chronic Periodontitis/pathology , Fibroblasts/physiology , Periodontal Ligament/cytology , Cell Culture Techniques , Cell Line , Cells, Cultured , Chemokines/analysis , Homeostasis/physiology , Humans , Hydrostatic Pressure , Inflammation Mediators/analysis , Interleukin-6/analysis , Interleukins/analysis , Matrix Metalloproteinase 1/analysis , Matrix Metalloproteinase 16/analysis , Matrix Metalloproteinase 7/analysis , Matrix Metalloproteinase 9/analysis , Matrix Metalloproteinases/analysis , Periodontal Ligament/physiology , Time Factors , Tissue Inhibitor of Metalloproteinase-1/analysis , Tissue Inhibitor of Metalloproteinase-2/analysis
6.
J Biomed Mater Res B Appl Biomater ; 100(7): 1729-35, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22807227

ABSTRACT

The in vitro cytotoxic response to endodontic sealers was assessed for one year. AH-Plus (AHP), Epiphany (EPH), EndoRez (ER), Guttaflow (GF), InnoEndo (IN), and Pulp Canal Sealer (PCS) were exposed to mouse osteoblasts and human monocytes after curing, 52 weeks of aging, and after resurfacing post-aging; cellular response was estimated by succinate dehydrogenase (SDH) activity. The effect of materials on TNFα secretion from activated (LPS) and inactivated monocytes also was measured. Cell responses were compared with ANOVA and Tukey post hoc analysis (α = 0.05). Initially, all materials except GF suppressed osteoblastic SDH activity compared with Teflon (Tf) controls. SDH activity in cells exposed to some aged sealers improved significantly; but IN and ER remained cytotoxic. When aged materials were resurfaced then tested, AHP, ER, GF, and IN did not change. EPH and PCS were more toxic. Monocytes responded similarly to the osteoblasts. No endodontic sealer activated monocytic TNFα secretion (p > 0.05 vs. -LPS Tf-controls). LPS-activated monocytes exposed to unresurfaced AHP and IN significantly suppressed TNFα secretion. When activated monocytes were exposed to the resurfaced sealers, differential suppression of TNFα secretion was observed for three of the four sealers tested (EPH, IN, and PCS). The results suggest that long-term aging may be a useful adjunct to in vitro assessment of these materials.


Subject(s)
Cytotoxins/pharmacology , Materials Testing/methods , Monocytes/metabolism , Osteoblasts/metabolism , Root Canal Filling Materials/pharmacology , Animals , Cell Line , Humans , Lipopolysaccharides/pharmacology , Mice , Monocytes/cytology , Osteoblasts/cytology , Time Factors , Tumor Necrosis Factor-alpha/biosynthesis
7.
Acta Biomater ; 8(9): 3270-82, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22659173

ABSTRACT

The design of antimicrobial polymers to address healthcare issues and minimize environmental problems is an important endeavor with both fundamental and practical implications. Quaternary ammonium silane-functionalized methacrylate (QAMS) represents an example of antimicrobial macromonomers synthesized by a sol-gel chemical route; these compounds possess flexible Si-O-Si bonds. In present work, a partially hydrolyzed QAMS co-polymerized with 2,2-[4(2-hydroxy 3-methacryloxypropoxy)-phenyl]propane is introduced. This methacrylate resin was shown to possess desirable mechanical properties with both a high degree of conversion and minimal polymerization shrinkage. The kill-on-contact microbiocidal activities of this resin were demonstrated using single-species biofilms of Streptococcus mutans (ATCC 36558), Actinomyces naeslundii (ATCC 12104) and Candida albicans (ATCC 90028). Improved mechanical properties after hydration provided the proof-of-concept that QAMS-incorporated resin exhibits self-repair potential via water-induced condensation of organic modified silicate (ormosil) phases within the polymerized resin matrix.


Subject(s)
Anti-Infective Agents/chemistry , Methacrylates/chemistry , Quaternary Ammonium Compounds/chemistry , Silanes/chemistry , Actinomyces/drug effects , Animals , Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Flow Cytometry , Magnetic Resonance Spectroscopy , Methacrylates/pharmacology , Mice , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Spectroscopy, Fourier Transform Infrared , Streptococcus mutans/drug effects , Thermogravimetry
8.
J Endod ; 38(7): 936-42, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22703657

ABSTRACT

INTRODUCTION: Quick-setting calcium aluminosilicate cement with improved washout resistance is a potential substitute for calcium silicate cements in endodontics. This study examined the effect of an experimental calcium aluminosilicate cement (Quick-Set; Primus Consulting, Bradenton, FL) on the viability of odontoblast-like cells. METHODS: The biocompatibility of Quick-Set and white ProRoot MTA (WMTA; Dentsply Tulsa Dental Specialties, Tulsa, OK) cements and their eluents was evaluated using a murine dental papilla-derived odontoblast-like cell line (MDPC-23); 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to examine the effects of the 2 hydraulic cements on mitochondrial metabolic activity. Flow cytometry and confocal laser scanning microscopy were used to identify the effects of the 2 cements on cell death-induced plasma membrane permeability to fluorescent dyes and DNA stains. RESULTS: After the first week of immersion in culture medium, Quick-Set and WMTA were more cytotoxic than the Teflon-negative control (P < .05), and the cells exhibited more apoptosis/necrosis than Teflon (P < .05). After the second week of immersion, the 2 cements were as biocompatible as Teflon (P > .05), with cells exhibiting minimal apoptosis/necrosis. Eluents from the set cements at 1:1 dilution were significantly more cytotoxic that eluents at 1:10 or 1:100 dilution (P < .05). CONCLUSIONS: Quick-Set and WMTA exhibited similar cytotoxicity profiles. They possess negligible in vitro toxicologic risks after time-dependent elution of toxic components.


Subject(s)
Cell Survival/drug effects , Odontoblasts/drug effects , Root Canal Filling Materials/toxicity , Silicate Cement/toxicity , Aluminum Compounds/toxicity , Aluminum Silicates/chemistry , Aluminum Silicates/toxicity , Animals , Calcium Compounds/chemistry , Calcium Compounds/toxicity , Cell Death , Cell Line , Drug Combinations , Flow Cytometry , Materials Testing , Mice , Microscopy, Confocal , Oxides/toxicity , Silicates/chemistry , Silicates/toxicity
9.
J Appl Physiol (1985) ; 111(4): 1072-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21757574

ABSTRACT

A bioreactor system was developed to provide high-amplitude cyclic hydrostatic compressive stress (cHSC) using compressed air mixed commercially as needed to create partial pressures of oxygen and carbon dioxide appropriate for the cells under investigation. Operating pressures as high as 300 psi are achievable in this system at cyclic speeds of up to 0.2 Hz. In this study, ligamentous fibroblasts from human periodontal ligaments (n = 6) were compressed on two consecutive days at 150 psi for 3 h each day, and the mRNA for families of extracellular matrix protein and protease isoforms was evaluated by real-time PCR array. Several integrins were significantly upregulated, most notably alpha-3 (6.4-fold), as was SPG7 (12.1-fold). Among the collagens, Col8a1 was highly upregulated at 53.5-fold, with Col6a1, Col6a2, and Col7a1 also significantly upregulated 4.4- to 8.5-fold. MMP-1 was the most affected at 122.9-fold upregulation. MMP-14 likewise increased 17.8-fold with slight reductions for the gelatinases and a significant increase of TIMP-2 at 5.8-fold. The development of this bioreactor system and its utility in characterizing periodontal ligament fibroblast mechanobiology in intermediate-term testing hold promise for better simulating the conditions of the musculoskeletal system and the large cyclic compressive stresses joints may experience in gait, exertion, and mastication.


Subject(s)
Bioreactors , Fibroblasts/cytology , Periodontal Ligament/cytology , ATPases Associated with Diverse Cellular Activities , Cells, Cultured , Collagen/genetics , Collagen/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Fibroblasts/metabolism , Gelatinases/genetics , Gelatinases/metabolism , Gene Expression , Humans , Hydrostatic Pressure , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Periodontal Ligament/metabolism , Pressure , RNA, Messenger/genetics , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism
10.
J Biomed Mater Res B Appl Biomater ; 97(1): 49-57, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21290574

ABSTRACT

Recent studies have reported that sealers may alter the secretion of specific cytokines from THP1 monocytic cells in vitro. In this study, a cytokine array was used to determine if endodontic sealers changed secretion of 42 cytokines. White mineral trioxide aggregate (WMTA), MTA preparation (CS), AH-Plus (AHP), and Pulp Canal Sealer (PCS) were mixed, allowed to set for 72 h, then "aged" in buffered-saline for 12 weeks. Aged specimens were placed in direct contact with THP1 for 72 h and their cytotoxicity (MTT assay) was assessed. Materials that were not severely toxic were then exposed to THP1 with or without lipolysaccharide (LPS), and the culture medium was assayed for cytokine secretion. Secretion of cytokines was quantified using infrared scanning (Odyssey(®)); replicate pairs were averaged. PCS severely suppressed MTT activity and was not assessed for its influence on cytokine secretion. WMTA, CS, and AHP induced a broad-based increase in cytokine secretion (>20% vs. Teflon controls), but AHP induced the greatest increase (>100% in 17 of 42 cytokines). The effects of the sealers on LPS-activated THP1 were biphasic, with some increases and decreases cytokine secretion of >20%, but few larger effects. This work shows endodontic sealers may alter the secretion of a broad cross section of cytokines from monocytic cells.


Subject(s)
Monocytes/metabolism , Monokines/metabolism , Root Canal Filling Materials/adverse effects , Root Canal Filling Materials/pharmacology , Cell Culture Techniques , Cell Survival/drug effects , Humans , Lipopolysaccharides/pharmacology , Materials Testing/methods
11.
J Biomed Mater Res B Appl Biomater ; 95(2): 380-6, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20862766

ABSTRACT

The in vitro cytotoxicity of five endodontic sealers was measured >8-12 weeks using L929 mouse fibroblasts, osteoblastic cells (ROS) 17/2.8 rat osteoblasts, and MC3T3-E1 mouse osteoblasts. Discs (n = 6) of AH-plus Jet (AHP), two versions of Endo Rez (ER, ERx), Epiphany (EPH), and Pulp Canal Sealer (PCS) were prepared. The sealers and Teflon (Tf, negative control) were placed in direct contact with cells after immersion in phosphate-buffered saline for 1-12 wk. Cellular succinate dehydrogenase (SDH) activity was estimated using the MTT method (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole), and activities were normalized to Teflon® controls. The cellular responses to the materials were compared using analysis of variance with Tukey posthoc analyses (α = 0.05). Initially, all sealers suppressed normalized SDH activity of L929 fibroblasts by >90%. After 12 weeks of immersion in saline, AHP exhibited the SDH activity above Tf (120%), followed by ERx (78%), ER (58%), PCS (38%), and EPH (28%), all statistically distinct (p < 0.05). In general, the three cell lines responded similarly to the sealers. However, AHP caused unique responses: ROS cells were significantly (p < 0.05) less sensitive initially, and AHP was severely cytotoxic to MC3T3 cells (<35% of Tf) through 8 weeks. The data suggest that with "aging" in saline, current endodontic sealers decrease in in vitro cytotoxicity at different rates.


Subject(s)
Root Canal Filling Materials , Animals , Cell Line , Mice , Reproducibility of Results
12.
J Endod ; 36(7): 1163-9, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20630291

ABSTRACT

OBJECTIVE: This in vitro study compared the cytotoxicity and osteogenic potential of an experimental calcium silicate-based sealer with an epoxy resin-based sealer (AH Plus; Dentsply Caulk, Milford, DE) and a zinc oxide-eugenol-based sealer (Pulp Canal Sealer; SybronEndo, Orange, CA). METHODS: Disks prepared from the respective sealer and from Teflon (negative control) were placed in direct contact with a MC3T3-E1 osteogenic cell line at 6 weekly intervals after immersion in a culture medium. Succinic dehydrogenase activities were evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Extracts from these sealers after the 6-week immersion period were investigated also by MTT assay. Aged sealers were then switched to an osteogenic medium for examination of the alkaline phosphatase activity and mineralization of extracellular matrices produced by the differentiated cells. RESULTS: All sealers exhibited severe toxicity after 24 hours, after which toxicity decreased gradually over the experimental period except for Pulp Canal Sealer, which remained severely toxic. Toxicity of the extracts derived from the sealers was concentration dependent, with those derived from the experimental sealer being the least cytotoxic at a 1:10 dilution. Minimal alkaline phosphatase activity and no bone formation were seen with Pulp Canal Sealer. The production of alkaline phosphatase was less intense for the experimental sealer at 7 days. However, both AH Plus and the experimental sealer did not inhibit mineralization of the extracellular matrix after 28 days. CONCLUSION: The experimental calcium silicate-based sealer may be regarded as minimally tissue irritating and does not interfere with bone regeneration even when it is inadvertently extruded through the apical constriction.


Subject(s)
Biocompatible Materials/pharmacology , Calcium Compounds/pharmacology , Osteogenesis/drug effects , Root Canal Filling Materials/pharmacology , Silicates/pharmacology , 3T3 Cells , Alkaline Phosphatase/analysis , Aluminum Compounds/pharmacology , Aluminum Compounds/toxicity , Animals , Biocompatible Materials/toxicity , Calcium Compounds/toxicity , Cell Survival , Coloring Agents , Culture Media, Conditioned , Drug Combinations , Epoxy Resins/pharmacology , Epoxy Resins/toxicity , Extracellular Matrix/drug effects , Materials Testing , Mice , Microscopy, Electron, Transmission , Minerals/metabolism , Osteoblasts/drug effects , Oxides/pharmacology , Oxides/toxicity , Root Canal Filling Materials/toxicity , Silicates/toxicity , Silver Staining , Succinate Dehydrogenase/analysis , Tetrazolium Salts , Thiazoles , Time Factors , Zinc Oxide-Eugenol Cement/pharmacology , Zinc Oxide-Eugenol Cement/toxicity
13.
J Periodontol ; 81(9): 1324-35, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20450375

ABSTRACT

BACKGROUND: In healthy periodontal tissue, innate immune responses effectively confine and suppress a bacterial insult. However, a disruption of the host-bacterial equilibrium may produce an overexpression of cytokines and lead to permanent, host-mediated tissue damage. Although such periodontal destruction primarily results from activated immune mechanisms, the site-specific damage suggests that local tissues participate in these pathologic changes. Periodontal ligament fibroblasts (PDLFs) are prominent in the periodontium and are critical in homeostasis and regeneration because they have the ability to produce multiple cytokines in response to a bacterial insult. These cells could play a role in the local pathogenesis of periodontal disease. METHODS: We studied alkaline phosphatase (ALP) activity, interleukin (IL)-6 production, and morphologic characteristics of cultured PDLFs that were isolated from periodontally healthy sites (H-PDLFs) and diseased sites (D-PDLFs) in humans. Quantitative analyses of 84 genes that are related to inflammation were performed using real-time polymerase chain reaction arrays. RESULTS: A mineralizing medium induced a significant increase of ALP in H-PDLFs, but no significant enzymatic changes were detected in D-PDLFs after such treatment. The protein and gene expression of IL6 showed a significant upregulation in D-PDLFs, which also demonstrated a significant upregulation of 54% of genes in the inflammatory gene arrays. CONCLUSIONS: To our knowledge, these results represent the first biologic evidence that D-PDLFs retain uniquely inflammatory phenotypes that could maintain localized destructive signals in periodontitis. The overexpression of proinflammatory cytokines by PDLFs could amplify local inflammation by the continuous triggering of immune responses. In addition, the location of these cells could be critical in the progression of the inflammatory front into the deeper tissues.


Subject(s)
Chronic Periodontitis/immunology , Immunologic Factors/metabolism , Inflammation Mediators/metabolism , Interleukin-6/biosynthesis , Periodontal Ligament/immunology , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Case-Control Studies , Cells, Cultured , Chemokines/biosynthesis , Chemokines/genetics , Fibroblasts/immunology , Gene Expression , Gene Expression Profiling , Humans , Immunologic Factors/genetics , Interleukin-6/analysis , Interleukin-6/genetics , Periodontal Ligament/cytology , Up-Regulation
14.
J Biomed Mater Res B Appl Biomater ; 93(2): 297-303, 2010 May.
Article in English | MEDLINE | ID: mdl-20235188

ABSTRACT

Few published studies describe the biological properties of calcium phosphate cements (CPCs) for dental applications. We measured several biologically relevant properties of 3 CPCs over an extended (8 wk) interval. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light-activated modified polyalkenoic acid, or 35% w/w polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs, respectively. Set cements were placed in direct contact with L929 fibroblasts for up to 8 weeks. Media Ca(+2) and pH were determined by atomic absorption spectroscopy and pH electrode respectively. Cell mitochondrial function was measured by MTT assay. Type I cements suppressed mitochondrial activity > 90% (vs. Teflon controls), but significantly (p < 0.05) improved to control levels over 8 weeks. Type II cements suppressed mitochondrial activity > 90% at all times. Type III cements elevated mitochondrial activity significantly after 7 wks. The pH profiles approached neutrality by 24 h, and all cements released calcium into the storage medium at all periods (24 h - 8 wk). We concluded that several types of cements had long-term biological profiles that show promise for dental applications.


Subject(s)
Calcium Phosphates/pharmacology , Calcium/analysis , Dental Cements/pharmacology , Fibroblasts/metabolism , Materials Testing , Animals , Calcium/metabolism , Calcium Phosphates/chemistry , Cell Line , Dental Cements/chemistry , Fibroblasts/cytology , Hydrogen-Ion Concentration , Mice , Mitochondria/metabolism , Time Factors
15.
J Biomed Mater Res A ; 93(3): 864-9, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-19701910

ABSTRACT

Titanates are inorganic compounds with high affinity for specific metal ions or metal compounds, including gold. We have previously demonstrated that both monosodium titanate (MST) and amorphous peroxo-titanate (APT) alone do not suppress cellular metabolism of several cell types, and we have shown that MST and APT adsorb and release gold compounds in biological salt solutions. In the current study, we extend this work and show that MST and APT loaded with two gold compounds deliver sufficient levels of these compounds to alter the metabolism of mammalian cells. Fibroblasts (L929) or monocytes (THP1) were exposed to MST and APT loaded with either Au(III) or Auranofin(R), a Au(I)-organic compound, for 24-72 h, after which succinate dehydrogenase (SDH) activity of the cells was measured using the MTT method. MST or APT alone did not suppress SDH activity of either cell type. AF and Au(III) alone suppressed SDH activity completely above 2 muM or 300 muM, respectively. APT and MST loaded with either gold compound suppressed L929 fibroblast SDH activity by 30-80% after 72 h, but Au(III)-loaded APT was more potent than AF-loaded APT. Monocyte SDH activity was not affected by any loaded titanate. Our results suggest that titanates could be used for solid phase delivery of metal compounds to affect mammalian cell function of some types of cells.


Subject(s)
Fibroblasts/drug effects , Fibroblasts/metabolism , Gold Compounds/metabolism , Monocytes/drug effects , Monocytes/metabolism , Oxides/pharmacology , Titanium/pharmacology , Animals , Auranofin/pharmacology , Cell Death/drug effects , Cell Line , Humans , Mice , Time Factors
16.
J Biomed Mater Res B Appl Biomater ; 92(2): 525-34, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20024965

ABSTRACT

Endosseous dental implants use is increasing in patients with systemic conditions that compromise wound healing. Manufacturers recently have redesigned implants to ensure more reliable and faster osseointegration. One design strategy has been to create a porous phosphate-enriched titanium oxide (TiUnite) surface to increase surface area and enhance interactions with bone. In the current study, the corrosion properties of TiUnite implants were studied in cultures of monocytic cells and solutions simulating inflammatory and hyperglycemic conditions. Furthermore, to investigate whether placement into bone causes enough mechanical damage to alter implant corrosion properties, the enhanced surface implants as well as machined titanium implants were placed into human cadaver mandibular bone, the bone removed, and the corrosion properties measured. Implant corrosion behavior was characterized by open circuit potentials, linear polarization resistance, and electrical impedance spectroscopy. In selected samples, THP1 cells were activated with lipopolysaccharide prior to implant exposure to simulate an inflammatory environment. No significant differences in corrosion potentials were measured between the TiUnite implants and the machined titanium implants in previous studies. TiUnite implants exhibited lower corrosion rates in all simulated conditions than observed in PBS, and EIS measurements revealed two time constants which shifted with protein-containing electrolytes. In addition, the TiUnite implants displayed a significantly lower corrosion rate than the machined titanium implants after placement into bone. The current study suggests that the corrosion risk of the enhanced oxide implant is lower than its machined surface titanium implant counterpart under simulated conditions of inflammation, elevated dextrose concentrations, and after implantation into bone.


Subject(s)
Dental Implants , Hyperglycemia/pathology , Inflammation/pathology , Phosphates/chemistry , Titanium/chemistry , Bone and Bones/pathology , Cadaver , Cell Line , Corrosion , Electrochemistry , Electrolytes , Glucose/pharmacology , Humans , Lipopolysaccharides/pharmacology , Mandible/pathology , Microscopy, Electron, Scanning , Microscopy, Polarization , Monocytes/chemistry , Monocytes/metabolism , Stress, Mechanical , Surface Properties , Wound Healing
17.
J Biomed Mater Res B Appl Biomater ; 91(2): 489-496, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19701912

ABSTRACT

Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion-exchange materials with high affinity for several heavy metal ions and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APTs are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro and then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials versus metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that "biodelivery" by metal-APT materials may be cell type-specific. Therefore, it appears that APTs are plausible solid-phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems , Metals/administration & dosage , Oxides/chemistry , Titanium/chemistry , Cell Line , Coloring Agents , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Humans , Metals/pharmacology , Metals/toxicity , Metals, Heavy/administration & dosage , Metals, Heavy/pharmacology , Metals, Heavy/toxicity , Mitochondria/drug effects , Succinate Dehydrogenase/metabolism , Tetrazolium Salts , Thiazoles
18.
J Biomed Mater Res B Appl Biomater ; 91(2): 839-844, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19572299

ABSTRACT

Dental endodontic sealers are in intimate contact with tissues around the root apex (periapical area) for extended periods. New endodontic sealers have been developed in the past decade, but the biological responses to many new products are not well documented. In this study, we assessed in vitro monocytic cytotoxic and inflammatory responses to several contemporary endodontic sealers. AH-Plus (AH), Pulp Canal Sealer (PC), Epiphany (EPH), Endo-Rez (ER), and an experimental Endo-Rez (ERx) were initially placed in buffered-saline for 12 weeks to simulate in vivo use. After "aging," specimens were placed in direct contact with THP1 monocytes for 72 h and their cytotoxicity (mitochondrial response; MTT) or ability to trigger or suppress cytokine secretion (ELISA; TNFalpha, IL1beta, IL=6; +/- lipopolysaccharide (LPS) exposure) were measured relative to Teflon (Tf) negative controls. Cellular responses among conditions were compared with ANOVA and Tukey post-hoc analysis (alpha = 0.05). Two of the five sealers, EPH and PC, still suppressed cell mitochondrial activity by 70% or more after 12 weeks of conditioning in saline. No sealer alone activated monocytic TNFalpha, IL1beta, or IL6 secretion (p > 0.05 vs. +LPS controls). When THP1 were activated by LPS after exposure to the sealers, differential suppression of TNFalpha, IL1beta, and IL6 secretion was observed for two of the five sealers tested. (EPH and PC) This data suggest that common endodontic sealers do not activate monocytic TNFalpha, IL1beta, and IL6 secretion in vitro by themselves, but degradation products of the sealers may suppress activation of monocytes.


Subject(s)
Dental Cements/therapeutic use , Pulpitis/prevention & control , Biocompatible Materials , Cell Survival/drug effects , Cytokines/metabolism , Dental Cements/chemical synthesis , Enzyme-Linked Immunosorbent Assay , Humans , Lipopolysaccharides/pharmacology , Mitochondria/drug effects , Monocytes/drug effects , Monocytes/metabolism
19.
J Biomed Mater Res B Appl Biomater ; 88(2): 358-65, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18437699

ABSTRACT

Nickel-containing alloys are used in dentistry because of their low cost, but poor corrosion behavior increases their risk of causing adverse biological responses. Intraorally, nickel-containing alloys accumulate bacterial plaque that triggers periodontal inflammation via toxins such as lipopolysaccharide (LPS). Recent evidence suggests that in monocytes, Ni(II) amplifies LPS-induced secretion of several cytokines that mediate periodontal destruction. Thus, we investigated the effects of Ni(II), with or without LPS, on the secretion of a broader array of cytokines from monocytes. We then measured monocytic expression of two proteins, Nrf2 and thioredoxin-1 (Trx1), that influence the regulation of cytokine secretion. Cytokine arrays were used to measure the effects of 0-50 microM Ni(II) on cytokine secretion from human THP1 monocytes, with or without LPS activation. Immunoblots were used to estimate Nrf2 and Trx1 levels. Our results indicate that both Ni(II) alone and Ni(II) with LPS have broad-based effects on cytokine secretion. Ni(II) increased Nrf2 levels by threefold, and LPS amplified the effects of Ni(II) by 10-fold. Trx1 levels did not change under any condition tested. Our results suggest that Ni(II)-induced changes in cytokine secretion by monocytes are diverse and may be influenced by Nrf2 but are not likely influenced by changes in whole-cell Trx1 levels.


Subject(s)
Cytokines/metabolism , Monocytes/drug effects , Monocytes/metabolism , Nickel/pharmacology , Cations/chemistry , Cell Line , Humans , NF-E2-Related Factor 2/metabolism , Nickel/chemistry , Thioredoxins/metabolism
20.
J Biomed Mater Res B Appl Biomater ; 88(2): 474-81, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18561292

ABSTRACT

The effects of hyperglycemia, altered cell function, or inflammatory mediators on implant corrosion are not well studied; yet, these effects are critical to implant biocompatibility and osseointegration. Because implant placement is burgeoning, patients with medically compromising systemic conditions such as diabetes are increasingly receiving implants, and the role of other inflammatory diseases on implant corrosion also needs investigation. In the current study, the corrosion properties of commercially available, machined titanium implants were studied in blood, cultures of monocytic cells, and solutions containing elevated dextrose concentrations. Implant corrosion was estimated by open circuit potentials, linear polarization resistance, and electrical impedance spectroscopy (EIS) for 26 h. In selected samples, THP1 monocytic cells were activated for 2 h with Lipopolysaccharide prior to implant exposure, and IL-1beta secretion was measured to assess the affect of the implants on monocyte activation. Implants under conditions of inflammatory stress exhibited more negative E(corr) values, suggesting an increased potential for corrosion. Linear polarization measurements detected increased corrosion rates in the presence of elevated dextrose conditions over PBS conditions. EIS measurements suggested that implants underwent surface passivation reactions that may have limited corrosion over the short term of this test. This result was supported by cyclic polarization tests. IL-1beta secretion was not altered under conditions of corrosion or implant exposure. The results suggest that inflammatory stress and hyperglycemia may increase the corrosion of dental endosseous titanium-based implants, but that longer, more aggressive electrochemical conditions may be necessary to fully assess these effects.


Subject(s)
Dental Implants , Titanium/chemistry , Cell Line , Corrosion , Humans , Inflammation , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...