Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gerontology ; 70(4): 439-454, 2024.
Article in English | MEDLINE | ID: mdl-37984340

ABSTRACT

INTRODUCTION: Frailty is conventionally diagnosed using clinical tests and self-reported assessments. However, digital health technologies (DHTs), such as wearable accelerometers, can capture physical activity and gait during daily life, enabling more objective assessments. In this study, we assess the feasibility of deploying DHTs in community-dwelling older individuals, and investigate the relationship between digital measurements of physical activity and gait in naturalistic environments and participants' frailty status, as measured by conventional assessments. METHODS: Fried Frailty Score (FFS) was used to classify fifty healthy individuals as non-frail (FFS = 0, n/female = 21/11, mean ± SD age: 71.10 ± 3.59 years), pre-frail (FFS = 1-2, n/female = 23/9, age: 73.74 ± 5.52 years), or frail (FFS = 3+, n/female = 6/6, age: 70.70 ± 6.53 years). Participants wore wrist-worn and lumbar-worn GENEActiv accelerometers (Activinsights Ltd., Kimbolton, UK) during three in-laboratory visits, and at-home for 2 weeks, to measure physical activity and gait. After this period, they completed a comfort and usability questionnaire. Compliant days at-home were defined as follows: those with ≥18 h of wear time, for the wrist-worn accelerometer, and those with ≥1 detected walking bout, for the lumbar-worn accelerometer. For each at-home measurement, a group analysis was performed using a linear regression model followed by ANOVA, to investigate the effect of frailty on physical activity and gait. Correlation between at-home digital measurements and conventional in-laboratory assessments was also investigated. RESULTS: Participants were highly compliant in wearing the accelerometers, as 94% indicated willingness to wear the wrist device, and 66% the lumbar device, for at least 1 week. Time spent in sedentary activity and time spent in moderate activity as measured from the wrist device, as well as average gait speed and its 95th percentile from the lumbar device were significantly different between frailty groups. Moderate correlations between digital measurements and self-reported physical activity were found. CONCLUSIONS: This work highlights the feasibility of deploying DHTs in studies involving older individuals. The potential of digital measurements in distinguishing frailty phenotypes, while unobtrusively collecting unbiased data, thus minimizing participants' travels to sites, will be further assessed in a follow-up study.


Subject(s)
Frail Elderly , Frailty , Humans , Female , Aged , Frailty/diagnosis , Feasibility Studies , Follow-Up Studies , Gait Analysis , Exercise , Gait , Geriatric Assessment
2.
Patient Prefer Adherence ; 17: 1143-1157, 2023.
Article in English | MEDLINE | ID: mdl-37139257

ABSTRACT

Purpose: The objective of this study was to gain insights into the patients' perspectives on the impact of cancer cachexia on physical activity and their willingness to wear digital health technology (DHT) devices in clinical trials. Patients and Methods: We administered a quantitative 20-minute online survey on aspects of physical activity (on a 0-100 scale) to 50 patients with cancer cachexia recruited through Rare Patient Voice, LLC. A subset of 10 patients took part in qualitative 45-minute web-based interviews with a demonstration of DHT devices. Survey questions related to the impact of weight loss (a key characteristic in Fearon's cachexia definition) on physical activity, patients' expectations regarding desired improvements and their level of meaningful activities, as well as preferences for DHT. Results: Seventy-eight percent of patients reported that their physical activity was impacted by cachexia, and for 77% of them, such impact was consistent over time. Patients perceived most impact of weight loss on walking distance, time and speed, and on level of activity during the day. Sleep, activity level, walking quality and distance were identified as the most meaningful activities to improve. Patients would like to see a moderate improvement of activity levels and consider it meaningful to perform physical activity of moderate intensity (eg, walk at normal pace) on a regular basis. The wrist was the preferred location for wearing a DHT device, followed by arm, ankle, and waist. Conclusion: Most patients reported physical activity limitations since the occurrence of weight loss compatible with cancer-associated cachexia. Walking distance, sleep and quality of walk were the most meaningful activities to moderately improve, and patients consider moderate physical activity as meaningful. Finally, this study population found the proposed wear of DHT devices on the wrist and around the waist acceptable for the duration of clinical studies.

3.
NPJ Digit Med ; 3: 127, 2020.
Article in English | MEDLINE | ID: mdl-33083562

ABSTRACT

Technological advances in multimodal wearable and connected devices have enabled the measurement of human movement and physiology in naturalistic settings. The ability to collect continuous activity monitoring data with digital devices in real-world environments has opened unprecedented opportunity to establish clinical digital phenotypes across diseases. Many traditional assessments of physical function utilized in clinical trials are limited because they are episodic, therefore, cannot capture the day-to-day temporal fluctuations and longitudinal changes in activity that individuals experience. In order to understand the sensitivity of gait speed as a potential endpoint for clinical trials, we investigated the use of digital devices during traditional clinical assessments and in real-world environments in a group of healthy younger (n = 33, 18-40 years) and older (n = 32, 65-85 years) adults. We observed good agreement between gait speed estimated using a lumbar-mounted accelerometer and gold standard system during the performance of traditional gait assessment task in-lab, and saw discrepancies between in-lab and at-home gait speed. We found that gait speed estimated in-lab, with or without digital devices, failed to differentiate between the age groups, whereas gait speed derived during at-home monitoring was able to distinguish the age groups. Furthermore, we found that only three days of at-home monitoring was sufficient to reliably estimate gait speed in our population, and still capture age-related group differences. Our results suggest that gait speed derived from activities during daily life using data from wearable devices may have the potential to transform clinical trials by non-invasively and unobtrusively providing a more objective and naturalistic measure of functional ability.

SELECTION OF CITATIONS
SEARCH DETAIL
...