Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39066056

ABSTRACT

The application of distributed fiber optic strain and temperature measurement can be utilized to address a multitude of measurement tasks across a diverse range of fields, particularly in the context of structural health monitoring in the domains of building construction, civil engineering, and special foundation engineering. However, a comprehensive understanding of the influences on the measurement method and the sensors is essential to prevent misinterpretations or measurement deviations. In this context, this study investigated the effects of moisture exposure, including various salt solutions and a high pH value, on a distributed strain measurement using Rayleigh backscattering. Three fiber optic sensors with different coating materials and one uncoated fiber were exposed to five different solutions for 24 h. The study revealed significant discrepancies (∼38%) in deformation between the three coating types depending on the surrounding solution. Furthermore, in contrast to the prevailing literature, which predominantly describes swelling effects, a negative deformation (∼-47 µÎµ) was observed in a magnesium chloride solution. The findings of this study indicate that corresponding effects can impact the precision of measurement, potentially leading to misinterpretations. Conversely, these effects could be used to conduct large-scale monitoring of chemical components using distributed fiber optic sensing.

2.
Sensors (Basel) ; 23(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067850

ABSTRACT

Distributed fiber optic strain measurement techniques have become increasingly important in recent years, especially in the field of structural health monitoring of reinforced concrete structures. Numerous publications show the various monitoring possibilities from bridges to special heavy structures. The present study is intended to demonstrate the possibilities, but also the challenges, of distributed fiber optic strain measurement in reinforced concrete structures. For this purpose, concrete beams for 3-point bending tests were equipped with optical fibers on the reinforcement and concrete surface as well as in the concrete matrix in order to record the strains in the compression and tension zone. In parallel, an analytical approach based on the maximum strains in the uncracked and cracked states was performed using the Eurocode 2 interpolation coefficient. In principle, the structural design correlates with the measured values, but the strains are underestimated, especially in the cracked zone. During load increase, structural distortions in the compression zone affected the strain signal, making reliable evaluation in this zone difficult. The information content of distributed fiber optic strain measurement in reinforced concrete structures can offer tremendous opportunities. Future research should consider all aspects of the bond, sensor selection and positioning. In addition, there is a lack of information on the long-term stability of the joint and the fiber coating, as well as the effects of dynamic loading.

3.
Materials (Basel) ; 13(20)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050141

ABSTRACT

The confinement of reinforced concrete (RC) compression members by fiber-reinforced polymers (FRPs) is an effective measure for the strengthening and retrofitting of existing structures. Thus far, extensive research on the stress-strain behavior and ultimate limit state design of FRP-confined concrete has been conducted, leading to various design models. However, these models are significantly different when compared to one another. In particular, the use of certain empirical efficiency and reduction factors results in various predictions of load-bearing behavior. Furthermore, most experimental programs solely focus on plain concrete specimens or demonstrate insufficient variation in the material properties. Therefore, this paper presents a comprehensive experimental study on plain and reinforced FRP-confined concrete, limited to circular cross sections. The program included 63 carbon FRP (CFRP)-confined plain and 60 CFRP-confined RC specimens with a variation in the geometries and in the applied materials. The analysis showed a significant influence of the compressive strength of the confined concrete on the confinement efficiency in the design methodology, as well as the importance of the proper determination of individual reduction values for different FRP composites. Finally, applicable experimental test results from the literature were included, enabling the development of a modified stress-strain and ultimate condition design model.

4.
Materials (Basel) ; 12(15)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357495

ABSTRACT

Reinforced concrete (RC) columns are often placed under confinement to increase their strength and ductility. Carbon fiber reinforced polymer (CFRP) materials have recently been recognized as favorable confinement systems. At present, a number of national standards and codes dedicated to the design of concrete components strengthened with CFRP in general and CFRP confinement in particular are available. These sets of rules provide design equations for confined reinforced concrete columns with circular and rectangular cross sections. Most of the standards and codes exhibit significant differences, including the used predictive models, limitations, observed effects and covered loading conditions. In this paper, five international standards and design guidelines are introduced and discussed. The purpose is to present a constructive and critical assessment of the state-of-the-art design methodologies available for CFRP confined RC columns and to discuss effects not previously considered properly. Therefore, some recent research efforts and findings from the Leipzig University of Applied Sciences are also introduced. The obtained data is used for a comparative study of the guideline predictive equations. Furthermore, it is shown that some new findings concerning the rupture strength and the maximum strength plus accompanying axial strain of a CFRP confined column are suitable to improve the current guidelines.

SELECTION OF CITATIONS
SEARCH DETAIL