Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Clin Med ; 13(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38610863

ABSTRACT

Objectives: To evaluate CV profiles, periprocedural complications, and in-hospital mortality in acute myocardial infarction (AMI) according to climate. Methods: Data from 2478 AMI patients (1779 men; mean age 67 ∓ 13 years; Pasquinucci Hospital ICU, Massa, Italy; 2007-2018) were retrospectively analyzed according to climate (LAMMA Consortium; Firenze, Italy) by using three approaches as follows: (1) annual warm (May-October) and cold (November-April) periods; (2) warm and cold extremes of the two periods; and (3) warm and cold extremes for each month of the two periods. Results: All approaches highlighted a higher percentage of AMI hospitalization for patients with adverse CV profiles in relation to low temperatures, or higher periprocedural complications and in-hospital deaths. In warmer times of the cold periods, there were fewer admissions of dyslipidemic patients. During warm periods, progressive heat anomalies were characterized by more smoker (approaches 2 and 3) and young AMI patient (approach 3) admissions, whereas cooler times (approach 3) evidenced a reduced hospitalization of diabetic and dyslipidemic patients. No significant effects were observed for the heat index and light circulation. Conclusions: Although largely overlapping, different approaches identify patient subgroups with different CV risk factors at higher AMI admission risk and adverse short-term outcomes. These data retain potential implications regarding pathophysiological mechanisms of AMI and its prevention.

2.
Int J Biometeorol ; 67(10): 1555-1567, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37526764

ABSTRACT

Many studies have reported that the impact of high temperatures affects physiology, welfare, health, and productivity of farm animals, and among these, the dairy cattle farming is one of the livestock sectors that suffers the greatest effects. The temperature-humidity index (THI) represents the state of the art in the evaluation of heat stress conditions in dairy cattle but often its measurement is not carried out in sheds. For this reason, the aim of this study was the monitoring of the THI in three dairy cattle farms in Mugello (Tuscany) to understand its influence on dairy cows. THI values were calculated using meteorological data from direct observation in sheds and outdoor environments. Data relating to the animal's behavior were collected using radio collars. The Pearson test and Mann-Kendall test were used for statistical analysis. The results highlighted a significant (P < 0.001) upward trend in THImax during the last 30 years both in Low Mugello (+ 1.1 every 10 years) and in High Mugello (+ 0.9 every 10 years). In Low Mugello sheds, during the period 2020-2022, more than 70% of daytime hours during the summer period were characterized by heat risk conditions (THI > 72) for livestock. On average the animals showed a significant (P < 0.001) decrease in time spent to feeding and rumination, both during the day and the night, with a significant (P < 0.001) increase in inactivity. This study fits into the growing demand for knowledge of the micro-climatic conditions within farms in order to support resilience actions for protecting both animal welfare and farm productivity from the effects of climate change. This could also be carried out thanks to estimation models which, based on the meteorological conditions forecast, could implement the thermal stress indicator (THI) directly from the high-resolution meteorological model, allowing to get a prediction of the farm's potential productivity loss based on the expected THI.


Subject(s)
Heat Stress Disorders , Hot Temperature , Animals , Female , Cattle , Humidity , Seasons , Temperature , Heat-Shock Response , Heat Stress Disorders/veterinary , Lactation , Milk
3.
Article in English | MEDLINE | ID: mdl-35805854

ABSTRACT

Many workers are exposed to the effects of heat and often to extreme temperatures. Heat stress has been further aggravated during the COVID-19 pandemic by the use of personal protective equipment to prevent SARS-CoV-2 infection. However, workers' risk perception of heat stress is often low, with negative effects on their health and productivity. The study aims to identify workers' needs and gaps in knowledge, suggesting the adaptation of measures that best comply with the needs of both workers and employers. A cross-sectional online questionnaire survey was conducted in Italy in the hottest months of 2020 (June-October) through different multimedia channels. The data collected were analyzed using descriptive statistics; analytical tests and analysis of variance were used to evaluate differences between groups of workers. In total, 345 questionnaires were collected and analyzed. The whole sample of respondents declared that heat is an important contributor to productivity loss and 83% of workers did not receive heat warnings from their employer. In this context, the internet is considered as the main source of information about heat-related illness in the workplace. Results highlight the need to increase workers' perception of heat stress in the workplace to safeguard their health and productivity. About two-thirds of the sample stated that working in the sun without access to shaded areas, working indoors without adequate ventilation, and nearby fire, steam, and hot surfaces, represent the main injuries' risk factors.


Subject(s)
COVID-19 , Heat Stress Disorders , Occupational Exposure , Occupational Health , COVID-19/epidemiology , Cross-Sectional Studies , Health Personnel , Heat Stress Disorders/epidemiology , Heat Stress Disorders/prevention & control , Heat-Shock Response , Humans , Occupational Exposure/adverse effects , Pandemics , Perception , Pilot Projects , SARS-CoV-2
4.
Environ Res ; 212(Pt D): 113475, 2022 09.
Article in English | MEDLINE | ID: mdl-35588774

ABSTRACT

The increase in average seasonal temperatures has an impact in the occupational field, especially for those sectors whose work activities are performed outdoors (agricultural, road and construction sectors). Among the adaptation measures and solutions developed to counteract occupational heat strain, personal cooling garments represent a wearable technology designed to remove heat from the human body, enhancing human performance. This study aims to investigate the effectiveness and the cooling power of a specific cooling garment, i.e. a ventilation jacket, by quantifying the evaporative heat losses and the total evaporative resistance both when worn alone and in combination with a work ensemble, at three adjustments of air ventilation speed. Standardised "wet" tests in a climatic chamber were performed on a sweating manikin in isothermal conditions considering three clothing ensembles (single jacket, work ensemble and a combination of both) and three adjustments of fan velocity. Results showed a significant increase (p < 0.001) in evaporative heat loss values when the fan velocity increased, particularly within the trunk zones for all the considered clothing ensembles, showing that fans enhanced the dissipation by evaporation. The cooling power, quantified in terms of percent changes of evaporative heat loss, showed values exceeding 100% when fans were on, in respect to the condition of fans-off, for the trunk zones except for the Chest. A significant (p < 0.01) decrease (up to 42.3%) in the total evaporative resistance values of the jacket, coupled with the work ensemble, was found compared to the fans-off condition. Results confirmed and quantified the cooling effect of the ventilation jacket which enhanced the evaporative heat losses of the trunk zones, helping the body to dissipate heat and showing the potential for a heat adaptation measure to be developed.


Subject(s)
Hot Temperature , Wearable Electronic Devices , Body Temperature Regulation , Humans , Protective Clothing , Sweating , Workplace
5.
Article in English | MEDLINE | ID: mdl-34574860

ABSTRACT

Outdoor workers are particularly exposed to climate conditions, and in particular, the increase of environmental temperature directly affects their health and productivity. For these reasons, in recent years, heat-health warning systems have been developed for workers generally using heat stress indicators obtained by the combination of meteorological parameters to describe the thermal stress induced by the outdoor environment on the human body. There are several studies on the verification of the parameters predicted by meteorological models, but very few relating to the validation of heat stress indicators. This study aims to verify the performance of two limited area models, with different spatial resolution, potentially applicable in the occupational heat health warning system developed within the WORKLIMATE project for the Italian territory. A comparison between the Wet Bulb Globe Temperature predicted by the models and that obtained by data from 28 weather stations was carried out over about three summer seasons in different daily time slots, using the most common skill of performance. The two meteorological models were overall comparable for much of the Italian explored territory, while major limits have emerged in areas with complex topography. This study demonstrated the applicability of limited area models in occupational heat health warning systems.


Subject(s)
Heat Stress Disorders , Occupational Exposure , Efficiency , Heat Stress Disorders/prevention & control , Hot Temperature , Humans , Italy
6.
Temperature (Austin) ; 8(3): 284-301, 2021.
Article in English | MEDLINE | ID: mdl-34485621

ABSTRACT

Successful implementation of cooling strategies obviously depends on identifying effective interventions, but in industrial settings, it is equally important to consider feasibility and economic viability. Many cooling interventions are available, but the decision processes affecting adoption by end-users are not well elucidated. We therefore arranged two series of meetings with stakeholders to identify knowledge gaps, receive feedback on proposed cooling interventions, and discuss factors affecting implementation of heat-health interventions. This included four meetings attended by employers, employees, and health and safety officers (n = 41), and three meetings attended primarily by policy makers (n = 74), with feedback obtained via qualitative and quantitative questionnaires and focus group discussions. On a 10-point scale, both employers and employees valued worker safety (9.1 ± 1.8; mean±SD) and health (8.5 ± 1.9) as more important than protecting company profits (6.3 ± 2.3). Of the respondents, 41% were unaware of any cooling strategies at their company and of those who were aware, only 30% thought the interventions were effective. Following presentation of proposed interventions, the respondents rated "facilitated hydration", "optimization of clothing/protective equipment", and "rescheduling of work tasks" as the top-three preferred solutions. The main barriers for adopting cooling interventions were cost, feasibility, employer perceptions, and legislation. In conclusion, preventing negative health and safety effects was deemed to be more important than preventing productivity loss. Regardless of work sector or occupation, both health and wealth were emphasized as important parameters and considered as somewhat interrelated. However, a large fraction of the European worker force lacks information on effective measures to mitigate occupational heat stress. List of abbreviations: OH-Stress: Occupational heat stress; WBGT: Wet Bulb Globe Temperature.

7.
Article in English | MEDLINE | ID: mdl-33801395

ABSTRACT

BACKGROUND: Increasing evidence links meteorological characteristics and air pollution to physiological responses during sports activities in urban areas with different traffic levels. OBJECTIVE: The main objective of the Smart Healthy ENV (SHE, "Smart Monitoring Integrated System For A Healthy Urban Environment In Smart Cities") project was to identify the specific responses of a group of volunteers during physical activity, by monitoring their heart rates and collecting breath samples, combined with data on meteorological determinants and pollution substances obtained through fixed sensor nodes placed along city routes and remotely connected to a dedicated data acquisition server. METHODS: Monitoring stations were placed along two urban routes in Pisa, each two km long, with one located within the park beside the Arno river (green route) and the other in a crowded traffic zone (red route). Our sample participants were engaged in sports activities (N = 15, with different levels of ability) and were monitored through wearable sensors. They were first asked to walk back and forth (4 km) and then to run the same route. The experimental sessions were conducted over one day per route. A breath sample was also collected before each test. A questionnaire concerning temperature and fatigue perception was administered for all of the steps of the study over the two days. RESULTS: The heart rates of the participants were monitored in the baseline condition, during walking, and while running, and were correlated with meteorological and pollutant data and with breath composition. Changes in the heart rates and breath composition were detected during the experimental sessions. These variations were related to the physical activity and to the meteorological conditions and air pollution levels. CONCLUSIONS: The SHE project can be considered a proof-of-concept study aimed at monitoring physiological and environmental variables during physical activity in urban areas, and can be used in future studies to provide useful information to those involved in sports and the broader community.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Cities , Environmental Exposure/analysis , Environmental Monitoring , Humans , Pilot Projects
8.
Article in English | MEDLINE | ID: mdl-33917051

ABSTRACT

The pandemic has been afflicting the planet for over a year and from the occupational point of view, healthcare workers have recorded a substantial increase in working hours. The use of personal protective equipment (PPE), necessary to keep safe from COVID-19 increases the chances of overheating, especially during the summer seasons which, due to climate change, are becoming increasingly warm and prolonged. A web survey was carried out in Italy within the WORKLIMATE project during the summer and early autumn 2020. Analysis of variance (ANOVA) was used to evaluate differences between groups. 191 questionnaires were collected (hospital doctor 38.2%, nurses 33.5%, other healthcare professionals 28.3%). The impact of PPE on the thermal stress perception declared by the interviewees was very high on the body areas directly covered by these devices (78% of workers). Workers who used masks for more than 4 h per day perceived PPE as more uncomfortable (p < 0.001) compared to the others and reported a greater productivity loss (p < 0.001). Furthermore, the study highlighted a high perception of thermal stress among healthcare workers that worn COVID-19-PPE and this enhances the need for appropriate heat health warning systems and response measures addressed to the occupational sector.


Subject(s)
COVID-19 , Personal Protective Equipment , Health Personnel , Humans , Italy/epidemiology , Pandemics , SARS-CoV-2 , Surveys and Questionnaires
9.
J Sci Med Sport ; 24(8): 747-755, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33757698

ABSTRACT

OBJECTIVES: To provide perspectives from the HEAT-SHIELD project (www.heat-shield.eu): a multi-national, inter-sectoral, and cross-disciplinary initiative, incorporating twenty European research institutions, as well as occupational health and industrial partners, on solutions to combat negative health and productivity effects caused by working on a warmer world. METHODS: In this invited review, we focus on the theoretical and methodological advancements developed to combat occupational heat stress during the last five years of operation. RESULTS: We outline how we created climate forecast models to incorporate humidity, wind and solar radiation to the traditional temperature-based climate projections, providing the basis for timely, policy-relevant, industry-specific and individualized information. Further, we summarise the industry-specific guidelines we developed regarding technical and biophysical cooling solutions considering effectiveness, cost, sustainability, and the practical implementation potential in outdoor and indoor settings, in addition to field-testing of selected solutions with time-motion analyses and biophysical evaluations. All recommendations were adjusted following feedback from workshops with employers, employees, safety officers, and adjacent stakeholders such as local or national health policy makers. The cross-scientific approach was also used for providing policy-relevant information based on socioeconomic analyses and identification of vulnerable regions considered to be more relevant for political actions than average continental recommendations and interventions. DISCUSSION: From the HEAT-SHIELD experiences developed within European settings, we discuss how this inter-sectoral approach may be adopted or translated into actionable knowledge across continents where workers and societies are affected by escalating environmental temperatures.


Subject(s)
Climate Change , Heat Stress Disorders/prevention & control , Hot Temperature , Intersectoral Collaboration , Occupational Diseases/prevention & control , Occupational Medicine/organization & administration , Europe , Humans , Information Dissemination , Interdisciplinary Communication , Occupational Health , Organizational Policy , Stakeholder Participation
10.
Sci Total Environ ; 751: 142334, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33182007

ABSTRACT

Land surface temperature (LST) predictors, such as impervious and vegetated surfaces, strongly influence the urban landscape mosaic, also changing microclimate conditions and exacerbating the surface urban heat island (SUHI) phenomenon. The aim of this study was to investigate the summer daytime SUHI phenomenon and the role played by impervious and tree cover surfaces in the 10 Italian peninsular metropolitan cities. Summer daytime LST values were assessed by using MODIS data referred to the months of June, July and August from 2016 to 2018. High spatial resolution (10 m) of impervious surface and tree cover layers was calculated based on open-data developed by the Italian National Institute for Environmental Protection and Research. A novel informative urban surface landscape layer was developed combining impervious surfaces and tree cover densities and its mapping for metropolitan cities was performed. Summer daytime SUHI rose significantly, increased especially in inland cities, by increasing the size of areas with low tree cover densities in the metropolitan core (or decreasing areas with low tree cover densities outside the metropolitan core), further increasing its intensity when the impervious density grew. A mitigating effect of the sea on daytime LST and SUHI was observed on coastal cities. The most intense SUHI phenomenon was observed in Turin (the largest Italian metropolitan city): for every 10% increase in areas with highly impervious surfaces and low tree cover densities in the metropolitan core, the SUHI significantly (p < 0.001) increased by 4.0 °C. Increased impervious surfaces combined with low tree cover densities represented the main driving process to increase the summer daytime SUHI intensity in most studied cities. These findings are useful to identify summer daytime LST critical areas and to implement the most efficient urban-heat-island mitigation strategies in order to safeguard the vulnerable urban environment and enhance quality of life for the population.

11.
Sci Total Environ ; 738: 140347, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32570084

ABSTRACT

The humanity is currently facing the COVID-19 pandemic challenge, the largest global health emergency after the Second World War. During summer months, many countries in the northern hemisphere will also have to counteract an imminent seasonal phenomenon, the management of extreme heat events. The novelty this year concerns that the world population will have to deal with a new situation that foresees the application of specific measures, including adjunctive personal protective equipment (i.e. facemasks and gloves), in order to reduce the potential transmission of the SARS-CoV-2 virus. These measures should help to decrease the risk of the infection transmission but will also represent an aggravating factor to counteract the heat effects on the population health both at occupational and environmental level. The use of a specific heat health warning system with personalized information based on individual, behavioural and environmental characteristics represents a necessary strategy to help a fast adaptation of the population at a time where the priority is to live avoiding SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Hot Temperature , Humans , SARS-CoV-2
12.
Article in English | MEDLINE | ID: mdl-31412559

ABSTRACT

Existing heat-health warning systems focus on warning vulnerable groups in order to reduce mortality. However, human health and performance are affected at much lower environmental heat strain levels than those directly associated with higher mortality. Moreover, workers are at elevated health risks when exposed to prolonged heat. This study describes the multilingual "HEAT-SHIELD occupational warning system" platform (https://heatshield.zonalab.it/) operating for Europe and developed within the framework of the HEAT-SHIELD project. This system is based on probabilistic medium-range forecasts calibrated on approximately 1800 meteorological stations in Europe and provides the ensemble forecast of the daily maximum heat stress. The platform provides a non-customized output represented by a map showing the weekly maximum probability of exceeding a specific heat stress condition, for each of the four upcoming weeks. Customized output allows the forecast of the personalized local heat-stress-risk based on workers' physical, clothing and behavioral characteristics and the work environment (outdoors in the sun or shade), also taking into account heat acclimatization. Personal daily heat stress risk levels and behavioral suggestions (hydration and work breaks recommended) to be taken into consideration in the short term (5 days) are provided together with long-term heat risk forecasts (up to 46 days), all which are useful for planning work activities. The HEAT-SHIELD platform provides adaptation strategies for "managing" the impact of global warming.


Subject(s)
Extreme Heat , Government Programs/standards , Occupational Exposure , Occupational Health , Disaster Planning , Environmental Monitoring , Europe , Humans , Occupational Exposure/adverse effects , Vulnerable Populations
13.
Article in English | MEDLINE | ID: mdl-31349585

ABSTRACT

The frequency of extreme heat events, such as the summer of 2003 in Europe, and their corresponding consequences for human beings are expected to increase under a warmer climate. The joint collaboration of institutional agencies and multidisciplinary approaches is essential for a successful development of heat-health warning systems and action plans which can reduce the impacts of extreme heat on the population. The present work constitutes a state-of-the-art review of 16 European heat-health warning systems and heat-health action plans, based on the existing literature, web search (over the National Meteorological Services websites) and questionnaires. The aim of this study is to pave the way for future heat-health warning systems, such as the one currently under development in the framework of the Horizon 2020 HEAT-SHIELD project. Some aspects are highlighted among the variety of examined European warning systems. The meteorological variables that trigger the warnings should present a clear link with the impact under consideration and should be chosen depending on the purpose and target of the warnings. Setting long-term planning actions as well as pre-alert levels might prevent and reduce damages due to heat. Finally, education and communication are key elements of the success of a warning system.


Subject(s)
Disaster Planning/methods , Extreme Heat/adverse effects , Health Planning/methods , Heat Stress Disorders/diagnosis , Heat Stress Disorders/epidemiology , Hot Temperature/adverse effects , Europe , Humans
14.
Article in English | MEDLINE | ID: mdl-30934675

ABSTRACT

Climate change will increase the frequency and severity of hazard events such as heat waves, with important effects in several European regions. It is of importance to consider overall effects as well as specific impact on vulnerable population groups such as outdoor workers. The agricultural and construction sectors represent two strategic occupational fields that in relatively recent years involve an increasing number of migrant workers, and therefore require a better management of cultural aspects, that may interact with and impact on heat-related health risk. For this reason, the present study evaluated heat-stress perception and management among native and immigrant workers in Europe. As part of the EU's Horizon 2020 HEAT-SHIELD project (grant agreement No. 668786), two agricultural and one construction companies, traditionally employing migrant workers, were evaluated with a questionnaire survey during the summer months of 2017. The data collected (104 case studies) were analyzed using descriptive statistics (Chi-squared tests) and the analysis of variance was performed with ANOVA test. From the results, migrant workers declared that work required greater effort than do native Italian workers (χ² = 17.1, p = 0.001) but reported less impact from heat on productivity (χ² = 10.6; p = 0.014) and thermal discomfort. In addition, migrant workers were mainly informed through written or oral communications, while native workers received information on heat-health issues through training courses. These findings are of importance for future information and mitigation actions to address socio-cultural gaps and reduce heat-stress vulnerability.


Subject(s)
Heat Stress Disorders/ethnology , Occupational Exposure , Transients and Migrants/psychology , Adult , Agriculture , Construction Industry , Efficiency , Humans , Italy/epidemiology , Language , Middle Aged , Perception , Risk , Seasons , Surveys and Questionnaires
15.
Am J Ind Med ; 62(3): 233-243, 2019 03.
Article in English | MEDLINE | ID: mdl-30675732

ABSTRACT

BACKGROUND: Growing evidence indicates that the exposure to high heat levels in the workplace results in health problems in workers. A meta-analysis was carried out to summarize the epidemiological evidence of the effects of heat exposure on the risk of occupational injuries. METHODS: A search strategy was conducted to retrieve studies on the effects of climate change on occupational injury risk. Among the 406 identified, 5 time-series and 3 case-crossover studies were selected for meta-analysis. RESULTS: Pooled risk estimates for time-series and case-crossover studies combined, and then separated, were 1.005 (95%CI: 1.001-1009), 1.002 (95%CI: 0.998-1.005), and 1.014 (95%CI: 1.012-1.017), respectively. Subgroup analyses found increased risks (not statistically significant) for male gender, age <25 years and agriculture. CONCLUSIONS: The present findings can orient further research to assess the effects of heat at workplace and consequently to establish better health policies for managing such exposure in at-risk regions.


Subject(s)
Hot Temperature/adverse effects , Occupational Exposure/adverse effects , Occupational Injuries/epidemiology , Age Factors , Agriculture , Climate Change , Construction Industry , Humans , Observational Studies as Topic , Sex Factors
16.
Int J Biometeorol ; 63(3): 293-300, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30680625

ABSTRACT

GPS collars for wildlife provide a large amount of spatio-temporal location data and are frequently equipped with sensors that record the animal-level environmental temperature at a schedulable sampling frequency. The simultaneous collection of environmental temperature and animal location may contribute not only to deepen the understanding of animal behavior in different climatic conditions, but also to increase the knowledge of climate features in inaccessible areas. The measurement of environmental temperature provided by the sensors, however, can be biased by several factors (e.g., surface temperature of the animal, direct solar radiation, precipitation), so in-depth studies are required to verify the correlation. The aim of this study was to identify an equation for correcting the collar-recorded temperature data, allowing to improve and refine the results obtained by the analysis of spatial data and to highlight the environmental factors having the greatest impact on the accuracy of the measures. Temperature data from GPS collars were obtained within a research on spatial behavior on 11 hinds while spatialized temperature data were obtained from LAMMA-IBIMET dataset. These data showed high correlation and an identical trend, although the GPS collar temperature data was always higher. This model could represent a tool to obtain an accurate measurement of temperatures in complex geographical areas with wild animals but low density of weather stations. The availability of corrected temperature data, recorded simultaneously with the animal location, could be useful for a more accurate comprehension of animal behavior in free-ranging conditions, both in case of forthcoming studies and to valorize existing datasets.


Subject(s)
Deer , Geographic Information Systems , Temperature , Animals , Climate , Italy , Models, Theoretical
17.
Sci Total Environ ; 551-552: 317-26, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26878643

ABSTRACT

Urban areas are characterized by the very high degree of soil sealing and continuous built-up areas: Italy is one of the European countries with the highest artificial land cover rate, which causes a substantial spatial variation in the land surface temperature (LST), modifying the urban microclimate and contributing to the urban heat island effect. Nevertheless, quantitative data regarding the contribution of different densities of built-up surfaces in determining urban spatial LST changes is currently lacking in Italy. This study, which aimed to provide clear and quantitative city-specific information on annual and seasonal spatial LST modifications resulting from increased urban built-up coverage, was conducted generally throughout the whole year, and specifically in two different periods (cool/cold and warm/hot periods). Four cities (Milan, Rome, Bologna and Florence) were included in the study. The LST layer and the built-up-surface indicator were obtained via use of MODIS remote sensing data products (1km) and a very high-resolution map (5m) of built-up surfaces recently developed by the Italian National Institute for Environmental Protection and Research. The relationships between the dependent (mean daily, daytime and nighttime LST values) and independent (built-up surfaces) variables were investigated through linear regression analyses, and comprehensive built-up-surface-related LST maps were also developed. Statistically significant linear relationships (p<0.001) between built-up surfaces and spatial LST variations were observed in all the cities studied, with a higher impact during the warm/hot period than in the cool/cold ones. Daytime and nighttime LST slope patterns depend on the city size and relative urban morphology. If implemented in the existing city plan, the urban maps of built-up-surface-related LST developed in this study might be able to support more sustainable urban land management practices by identifying the critical areas (Hot-Spots) that would benefit most from mitigation actions by local authorities, land-use decision makers, and urban planners.

18.
PLoS One ; 10(12): e0144468, 2015.
Article in English | MEDLINE | ID: mdl-26714309

ABSTRACT

The frequency of natural hazards has been increasing in the last decades in Europe and specifically in Mediterranean regions due to climate change. For example heavy precipitation events can lead to disasters through the interaction with exposed and vulnerable people and natural systems. It is therefore necessary a prevention planning to preserve human health and to reduce economic losses. Prevention should mainly be carried out with more adequate land management, also supported by the development of an appropriate risk prediction tool based on weather forecasts. The main aim of this study is to investigate the relationship between weather types (WTs) and the frequency of floods and landslides that have caused damage to properties, personal injuries, or deaths in the Italian regions over recent decades. In particular, a specific risk index (WT-FLARI) for each WT was developed at national and regional scale. This study has identified a specific risk index associated with each weather type, calibrated for each Italian region and applicable to both annual and seasonal levels. The risk index represents the seasonal and annual vulnerability of each Italian region and indicates that additional preventive actions are necessary for some regions. The results of this study represent a good starting point towards the development of a tool to support policy-makers, local authorities and health agencies in planning actions, mainly in the medium to long term, aimed at the weather damage reduction that represents an important issue of the World Meteorological Organization mission.


Subject(s)
Floods/statistics & numerical data , Landslides/statistics & numerical data , Weather , Italy , Risk Assessment , Seasons
19.
ScientificWorldJournal ; 2014: 961750, 2014.
Article in English | MEDLINE | ID: mdl-24523657

ABSTRACT

The aim of this study is to identify the most effective thermal predictor of heat-related very-elderly mortality in two cities located in different geographical contexts of central Italy. We tested the hypothesis that use of the state-of-the-art rational thermal indices, the Universal Thermal Climate Index (UTCI), might provide an improvement in predicting heat-related mortality with respect to other predictors. Data regarding very elderly people (≥ 75 years) who died in inland and coastal cities from 2006 to 2008 (May-October) and meteorological and air pollution were obtained from the regional mortality and environmental archives. Rational (UTCI) and direct thermal indices represented by a set of bivariate/multivariate apparent temperature indices were assessed. Correlation analyses and generalized additive models were applied. The Akaike weights were used for the best model selection. Direct multivariate indices showed the highest correlations with UTCI and were also selected as the best thermal predictors of heat-related mortality for both inland and coastal cities. Conversely, the UTCI was never identified as the best thermal predictor. The use of direct multivariate indices, which also account for the extra effect of wind speed and/or solar radiation, revealed the best fitting with all-cause, very-elderly mortality attributable to heat stress.


Subject(s)
Heat Stress Disorders/mortality , Hot Temperature/adverse effects , Air Pollution , Heat Stress Disorders/epidemiology , Humans , Italy/epidemiology , Models, Statistical , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...