Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 14(3): e1007251, 2018 03.
Article in English | MEDLINE | ID: mdl-29505558

ABSTRACT

Vibrio cholerae, the causative agent of the cholera disease, is commonly used as a model organism for the study of bacteria with multipartite genomes. Its two chromosomes of different sizes initiate their DNA replication at distinct time points in the cell cycle and terminate in synchrony. In this study, the time-delayed start of Chr2 was verified in a synchronized cell population. This replication pattern suggests two possible regulation mechanisms for other Vibrio species with different sized secondary chromosomes: Either all Chr2 start DNA replication with a fixed delay after Chr1 initiation, or the timepoint at which Chr2 initiates varies such that termination of chromosomal replication occurs in synchrony. We investigated these two models and revealed that the two chromosomes of various Vibrionaceae species terminate in synchrony while Chr2-initiation timing relative to Chr1 is variable. Moreover, the sequence and function of the Chr2-triggering crtS site recently discovered in V. cholerae were found to be conserved, explaining the observed timing mechanism. Our results suggest that it is beneficial for bacterial cells with multiple chromosomes to synchronize their replication termination, potentially to optimize chromosome related processes as dimer resolution or segregation.


Subject(s)
Biological Evolution , Chromosomes, Bacterial , DNA Replication , Vibrionaceae/genetics , Bacterial Proteins/genetics , Vibrio cholerae/genetics
2.
Article in English | MEDLINE | ID: mdl-28066763

ABSTRACT

Learning by building is one of the core ideas of synthetic biology research. Consequently, building synthetic chromosomes is the way to fully understand chromosome characteristics. The last years have seen exciting synthetic chromosome studies. We had previously introduced the synthetic secondary chromosome synVicII in Escherichia coli. It is based on the replication mechanism of the secondary chromosome in Vibrio cholerae. Here, we present a detailed analysis of its genetic characteristics and a selection approach to optimize replicon stability. We probe the origin diversity of secondary chromosomes from Vibrionaceae by construction of several new respective replicons. Finally, we present a synVicII version 2.0 with several innovations including its full compatibility with the popular modular cloning (MoClo) assembly system.

3.
Biotechnol J ; 10(2): 302-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25359671

ABSTRACT

Recent developments in DNA-assembly methods make the synthesis of synthetic chromosomes a reachable goal. However, the redesign of primary chromosomes bears high risks and still requires enormous resources. An alternative approach is the addition of synthetic chromosomes to the cell. The natural secondary chromosome of Vibrio cholerae could potentially serve as template for a synthetic secondary chromosome in Escherichia coli. To test this assumption we constructed a replicon named synVicII based on the replication module of V. cholerae chromosome II (oriII). A new assay for the assessment of replicon stability was developed based on flow-cytometric analysis of unstable GFP variants. Application of this assay to cells carrying synVicII revealed an improved stability compared to a secondary replicon based on E. coli oriC. Cell cycle analysis and determination of cellular copy numbers of synVicII indicate that replication timing of the synthetic replicon in E. coli is comparable to the natural chromosome II (ChrII) in V. cholerae. The presented synthetic biology work provides the basis to use secondary chromosomes in E. coli to answer basic research questions as well as for several biotechnological applications.


Subject(s)
Chromosomes, Bacterial , DNA, Bacterial/metabolism , Escherichia coli/genetics , Vibrio cholerae/genetics , DNA Replication , Genetic Engineering , Replication Origin , Synthetic Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...