Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Nano Mater ; 6(14): 13116-13126, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37533542

ABSTRACT

Herein, we propose an oxygen nanobubbles-embedded hydrogel (ONB-G) with carbopol for oxygenation of wounds to accelerate the wound healing process. We integrate carbopol, hydrogel, and dextran-based oxygen nanobubbles (ONBs) to prepare ONB-G where ONBs can hold and release oxygen to accelerate wound healing. Oxygen release tests showed that the proposed ONB-G could encapsulate oxygen in the hydrogels for up to 34 days; meanwhile, fluorescence studies indicated that the ONB-G could maintain high oxygen levels for up to 4 weeks. The effect of carbopol concentration on the oxygen release capacity and rheological features of the ONB-G were also investigated along with the sterility of ONB-G. HDFa cell-based studies were first conducted to evaluate the viability, proliferation, and revival of cells in hypoxia. Scratch assay and mRNA expression studies indicated the potential benefit for wound closure. Histological evaluation of tissues with a pig model with incision and punch wounds showed that treatment with ONB-G exhibited improved healing compared with hydrogel without ONBs or treated without the gel. Our studies show that dextran-shell ONBs embedded in a gel (ONB-G) have the potential to accelerate wound healing, given its oxygen-holding capacity and release properties.

2.
Transl Vis Sci Technol ; 12(2): 16, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36763051

ABSTRACT

Purpose: Vein or artery occlusion causes a hypoxic environment by preventing oxygen delivery and diffusion to tissues. Diseases such as retinal vein occlusion, central retinal artery occlusion, or diabetic retinopathy create a stroke-type condition that leads to functional blindness in the effected eye. We aim to develop an oxygen delivery system consisting of oxygen nanobubbles (ONBs) that can mitigate retinal ischemia during a severe hypoxic event such as central retinal artery occlusion. Methods: ONBs were synthesized to encapsulate oxygen saturated molecular medical grade water. Stability, oxygen release, biocompatibility, reactive oxygen species, superoxide, MTT, and terminal uridine nick-end labeling assays were performed. Cell viability was evaluated, and safety experiments were conducted in rabbits. Results: The ONBs were approximately 220 nm in diameter, with a zeta potential of -58.8 mV. Oxygen release studies indicated that 74.06 µg of O2 is released from the ONBs after 12 hours at 37°C. Cell studies indicated that ONBs are safe and cells are viable. There was no significant increase in reactive oxygen species, superoxide, or double-stranded DNA damage after ONB treatment. ONBs preserve mitochondrial function and viability. Histological sections from rabbit eyes indicated that ONBs were not toxic. Conclusions: The ONBs proposed have excellent oxygen holding and release properties to mitigate ischemic conditions in the retina. They are sterile, stable, and nontoxic. Translation Relevance: ONB technology was evaluated for its physical properties, oxygen release, sterility, stability, and safety. Our results indicate that ONBs could be a viable treatment approach to mitigate hypoxia during ischemic conditions in the eye upon timely administration.


Subject(s)
Oxygen , Retinal Artery Occlusion , Animals , Rabbits , Reactive Oxygen Species , Superoxides , Hypoxia/pathology , Retina , Retinal Artery Occlusion/pathology
3.
Environ Sci Pollut Res Int ; 30(8): 21990-21999, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36280635

ABSTRACT

The pronephros (early-stage kidney) is an important osmoregulatory organ, and the onset of its function occurs relatively early in some teleost fishes. As such, any defects in kidney development and function are likely associated with a decreased ability to osmoregulate. Previous work has shown that early-life stage (ELS) zebrafish (Danio rerio) acutely exposed to Deepwater Horizon (DWH) crude oil exhibit transcriptional changes in key genes involved in pronephros development and function, as well as pronephric morphological defects and whole-animal osmoregulatory impairment. The objective of this study was to examine the acute effects of crude oil exposure during zebrafish ELS on pronephros function by assessing its fluid clearance capacity and glomerular filtration integrity. Following a 72-h exposure to control conditions, 20% or 40% dilutions of high-energy water-accommodated fractions (HEWAF) of DWH crude oil, zebrafish were injected into the common cardinal vein either with fluorescein-labeled (FITC) 70-kDa dextran to assess glomerular filtration integrity or with FITC-inulin to assess pronephric clearance capacity. Fluorescence was quantified after the injections at predetermined time intervals by fluorescence microscopy. The results demonstrated a diminished pronephric fluid clearance capacity and failed glomerular perfusion when larvae were exposed to 40% HEWAF dilutions, whereas only a reduced glomerular filtration selectivity was observed in zebrafish previously exposed to the 20% HEWAF dilution.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Zebrafish/genetics , Petroleum/toxicity , Kidney/chemistry , Larva , Water Pollutants, Chemical/analysis
4.
Front Physiol ; 13: 819767, 2022.
Article in English | MEDLINE | ID: mdl-35283767

ABSTRACT

In the era of the advanced nanomaterials, use of nanoparticles has been highlighted in biomedical research. However, the demonstration of DNA plasmid delivery with nanoparticles for in vivo gene delivery experiments must be carefully tested due to many possible issues, including toxicity. The purpose of the current study was to deliver a Notch Intracellular Domain (NICD)-encoded plasmid via poly(lactic-co-glycolic acid) (PLGA) nanoparticles and to investigate the toxic environmental side effects for an in vivo experiment. In addition, we demonstrated the target delivery to the endothelium, including the endocardial layer, which is challenging to manipulate gene expression for cardiac functions due to the beating heart and rapid blood pumping. For this study, we used a zebrafish animal model and exposed it to nanoparticles at varying concentrations to observe for specific malformations over time for toxic effects of PLGA nanoparticles as a delivery vehicle. Our nanoparticles caused significantly less malformations than the positive control, ZnO nanoparticles. Additionally, the NICD plasmid was successfully delivered by PLGA nanoparticles and significantly increased Notch signaling related genes. Furthermore, our image based deep-learning analysis approach evaluated that the antibody conjugated nanoparticles were successfully bound to the endocardium to overexpress Notch related genes and improve cardiac function such as ejection fraction, fractional shortening, and cardiac output. This research demonstrates that PLGA nanoparticle-mediated target delivery to upregulate Notch related genes which can be a potential therapeutic approach with minimum toxic effects.

6.
Front Cardiovasc Med ; 8: 707897, 2021.
Article in English | MEDLINE | ID: mdl-34651022

ABSTRACT

Notch signaling is a highly conserved signaling system that is required for embryonic development and regeneration of organs. When the signal is lost, maldevelopment occurs and leads to a lethal state. Delivering exogenous genetic materials encoding Notch into cells can reestablish downstream signaling and rescue cellular functions. In this study, we utilized the negatively charged and FDA approved polymer poly(lactic-co-glycolic acid) to encapsulate Notch Intracellular Domain-containing plasmid in nanoparticles. We show that primary human umbilical vein endothelial cells (HUVECs) readily uptake the nanoparticles with and without specific antibody targets. We demonstrated that our nanoparticles are non-toxic, stable over time, and compatible with blood. We further demonstrated that HUVECs could be successfully transfected with these nanoparticles in static and dynamic environments. Lastly, we elucidated that these nanoparticles could upregulate the downstream genes of Notch signaling, indicating that the payload was viable and successfully altered the genetic downstream effects.

7.
APL Bioeng ; 4(3): 036103, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32637858

ABSTRACT

Light-sheet fluorescence microscopy (LSFM) provides access to multi-dimensional and multi-scale in vivo imaging of animal models with highly coherent volumetric reconstruction of the tissue morphology, via a focused laser light sheet. The orthogonal illumination and detection LSFM pathways account for minimal photobleaching and deep tissue optical sectioning through different perspective views. Although rotation of the sample and deep tissue scanning constitutes major advantages of LSFM, images may suffer from intrinsic problems within the modality, such as light mismatch of refractive indices between the sample and mounting media and varying quantum efficiency across different depths. To overcome these challenges, we hereby introduce an illumination correction technique integrated with depth detail amelioration to achieve symmetric contrast in large field-of-view images acquired using a low power objective lens. Due to an increase in angular dispersion of emitted light flux with the depth, we combined the dehazing algorithm with morphological operations to enhance poorly separated overlapping structures with subdued intensity. The proposed method was tested on different LSFM modalities to illustrate its applicability on correcting anisotropic illumination affecting the volumetric reconstruction of the fluorescently tagged region of interest.

8.
J Vis Exp ; (139)2018 09 15.
Article in English | MEDLINE | ID: mdl-30272656

ABSTRACT

Light-sheet fluorescence microscopy has been widely used for rapid image acquisition with a high axial resolution from micrometer to millimeter scale. Traditional light-sheet techniques involve the use of a single illumination beam directed orthogonally at sample tissue. Images of large samples that are produced using a single illumination beam contain stripes or artifacts and suffer from a reduced resolution due to the scattering and absorption of light by the tissue. This study uses a dual-sided illumination beam and a simplified CLARITY optical clearing technique for the murine heart. These techniques allow for deeper imaging by removing lipids from the heart and produce a large field of imaging, greater than 10 x 10 x 10 mm3. As a result, this strategy enables us to quantify the ventricular dimensions, track the cardiac lineage, and localize the spatial distribution of cardiac-specific proteins and ion-channels from the post-natal to adult mouse hearts with sufficient contrast and resolution.


Subject(s)
Heart/diagnostic imaging , Animals , Mice , Microscopy, Fluorescence/methods
9.
J Vis Exp ; (138)2018 08 10.
Article in English | MEDLINE | ID: mdl-30148501

ABSTRACT

The hemodynamic forces experienced by the heart influence cardiac development, especially trabeculation, which forms a network of branching outgrowths from the myocardium. Genetic program defects in the Notch signaling cascade are involved in ventricular defects such as Left Ventricular Non-Compaction Cardiomyopathy or Hypoplastic Left Heart Syndrome. Using this protocol, it can be determined that shear stress driven trabeculation and Notch signaling are related to one another. Using Light-sheet Fluorescence Microscopy, visualization of the developing zebrafish heart was possible. In this manuscript, it was assessed whether hemodynamic forces modulate the initiation of trabeculation via Notch signaling and thus, influence contractile function occurs. For qualitative and quantitative shear stress analysis, 4-D (3-D+time) images were acquired during zebrafish cardiac morphogenesis, and integrated light-sheet fluorescence microscopy with 4-D synchronization captured the ventricular motion. Blood viscosity was reduced via gata1a-morpholino oligonucleotides (MO) micro-injection to decrease shear stress, thereby, down-regulating Notch signaling and attenuating trabeculation. Co-injection of Nrg1 mRNA with gata1a MO rescued Notch-related genes to restore trabeculation. To confirm shear stress driven Notch signaling influences trabeculation, cardiomyocyte contraction was further arrested via tnnt2a-MO to reduce hemodynamic forces, thereby, down-regulating Notch target genes to develop a non-trabeculated myocardium. Finally, corroboration of the expression patterns of shear stress-responsive Notch genes was conducted by subjecting endothelial cells to pulsatile flow. Thus, the 4-D light-sheet microscopy uncovered hemodynamic forces underlying Notch signaling and trabeculation with clinical relevance to non-compaction cardiomyopathy.


Subject(s)
Four-Dimensional Computed Tomography/methods , Heart/embryology , Microscopy, Fluorescence/methods , Myocardium/pathology , Organogenesis/genetics , Animals , Humans , Stress, Mechanical , Zebrafish
10.
J Biomed Mater Res B Appl Biomater ; 105(2): 291-306, 2017 02.
Article in English | MEDLINE | ID: mdl-26506408

ABSTRACT

Gastrointestinal pathologies, injuries, and defects affect millions of individuals each year. While there are diverse treatment options for these individuals, no ideal solution exists. The repair or replacement of gastrointestinal tissue, therefore, represents a large unmet clinical need. Biomaterials derived from extracellular matrix (ECM) scaffolds have been effectively used to repair or replace numerous tissues throughout the body in both preclinical and clinical studies. Such scaffolds are prepared from decellularized tissues, and the biochemical, structural, and biologic properties vary depending upon the source tissue from which the ECM is derived. Given the potential benefit of a site-specific ECM scaffold for some applications, the objective of this study was to prepare, characterize, and determine the in vitro and in vivo cell response to ECM derived from porcine colon. Results of this study show that porcine colon can be effectively decellularized while retaining biochemical and structural constituents of the source tissue. Two forms of colonic ECM, scaffold and hydrogel, were shown to be cell friendly and facilitate the polarization of macrophages toward an M2 phenotype both in vitro and in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 291-306, 2017.


Subject(s)
Colon/chemistry , Hydrogels/chemistry , Intestinal Mucosa/chemistry , Macrophages/metabolism , Materials Testing , Tissue Scaffolds/chemistry , Animals , Cell Line , Macrophages/cytology , Mice , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...