Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 200: 111631, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31630045

ABSTRACT

In this work, over the course of four seasons (12 months), we have monitored the fluorescence quantum efficiency (η) from two sets (S1 and S2) of fresh natural dye extracts from the leaves of Tradescantia pallida purpurea. The natural dye was extracted in aqueous solutions from leaves collected from regions with a predominance of shade (S1) and sun (S2) during the day. The thermo-optical parameter fractional thermal load (φ) was measured using conical diffraction (CD) patterns caused by thermally driven self-phase modulation, for η determination in both sets of solutions. Fluorescence measurements corroborate the CD results, and the η values are, on average, slightly higher (~ 11%) in the summer than in the other seasons for both sets of samples (S1 and S2). In addition, the experimental results are presented using natural dye extracted from Tradescantia pallida purpurea as a fungicide probe in Fusarium solani, Sclerotinia sclerotiorum, and Colletotrichum gloeosporioides fungi. The promising fungicide results obtained for the aqueous natural dye extract were compared with those obtained for other natural dyes and fungi. The fungi tested are of the necrotrophic group and constitute important pathosystems in Brazil, causing diseases in several crops that synthetic fungicides often cannot control or do so with low efficiency.


Subject(s)
Antifungal Agents/chemistry , Coloring Agents/chemistry , Plant Extracts/chemistry , Tradescantia/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Coloring Agents/isolation & purification , Coloring Agents/pharmacology , Fungi/drug effects , Plant Leaves/chemistry , Plant Leaves/metabolism , Refractometry , Seasons , Tradescantia/metabolism
2.
J Photochem Photobiol B ; 151: 208-12, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26313857

ABSTRACT

The present work reports the spectroscopic and thermo-optical properties of CdSe/ZnS and CdSe/CdS core-shell quantum dots (QDs) embedded in synthetic saliva. Spectroscopy studies were performed applying nonfunctionalized CdSe/ZnS QDs (3.4, 3.9 and 5.1 nm cores) and hydroxyl group-functionalized ultrasmall CdSe/CdS core-shell quantum dots (1.6 nm core) suspended in artificial saliva at different potential of hydrogen (pH) values. Saliva was chosen because it is important in a variety of functions such as protecting teeth through the buffering capacity of the formed biofilm, hydration, and dental remineralization. Thermo-optical characterizations using the thermal lens (TL) technique were performed in QD-biofluids for different QD sizes and pH values (3.9-8.3) of the synthetic oral fluids. Transient TL measurements were applied to determine the fluorescence quantum efficiency (η) in QD-biomaterial systems. High η value was obtained for ultrasmall CdSe/CdS QDs. Fluorescence spectral measurements of the biomaterials support the TL results. In addition, for nonfunctionalized (3.4 and 5.1 nm) and hydroxyl group-functionalized QDs, the temporal behavior of the fluorescence spectra was accomplished about approximately 1200 h at two different biofluid pH values (3.9 and 8.3). The temporal fluorescence intensity result is dependent on the pH of the saliva in which the QDs were embedded, QD functionalization and QD sizes. The time for an approximately 50% decrease in the peak intensity fluorescence of CdSe/ZnS QDs (3.4 nm core) and ultrasmall CdSe/CdS QDs is respectively 25 h and 312 h at pH 3.9 and 48 h and 360 h at pH 8.3.


Subject(s)
Quantum Dots/chemistry , Saliva/chemistry , Cadmium Compounds/chemistry , Hydrogen-Ion Concentration , Nanostructures/chemistry , Selenium Compounds/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Zinc Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...