Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
New Phytol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855965

ABSTRACT

Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.

2.
Front Plant Sci ; 15: 1375958, 2024.
Article in English | MEDLINE | ID: mdl-38766471

ABSTRACT

Carbohydrate reserves play a vital role in plant survival during periods of negative carbon balance. Under a carbon-limited scenario, we expect a trade-offs between carbon allocation to growth, reserves, and defense. A resulting hypothesis is that carbon allocation to reserves exhibits a coordinated variation with functional traits associated with the 'fast-slow' plant economics spectrum. We tested the relationship between non-structural carbohydrates (NSC) of tree organs and functional traits using 61 angiosperm tree species from temperate and tropical forests with phylogenetic hierarchical Bayesian models. Our results provide evidence that NSC concentrations in stems and branches are decoupled from plant functional traits. while those in roots are weakly coupled with plant functional traits. In contrast, we found that variation between NSC concentrations in leaves and the fast-slow trait spectrum was coordinated, as species with higher leaf NSC had trait values associated with resource conservative species, such as lower SLA, leaf N, and leaf P. We also detected a small effect of leaf habit on the variation of NSC concentrations in branches and roots. Efforts to predict the response of ecosystems to global change will need to integrate a suite of plant traits, such as NSC concentrations in woody organs, that are independent of the 'fast-slow' plant economics spectrum and that capture how species respond to a broad range of global change drivers.

3.
Plant Soil ; 496(1-2): 485-504, 2024.
Article in English | MEDLINE | ID: mdl-38510944

ABSTRACT

Background and aims: Changes in water availability during the growing season are becoming more frequent due to climate change. Our study aimed to compare the fine-root acclimation capacity (plasticity) of six temperate tree species aged six years and exposed to high or low growing season soil water availability over five years. Methods: Root samples were collected from the five upper strata of mineral soil to a total soil depth of 30 cm in monoculture plots of Acer saccharum Marsh., Betula papyrifera Marsh., Larix laricina K. Koch, Pinus strobus L., Picea glauca (Moench) Voss and Quercus rubra L. established at the International Diversity Experiment Network with Trees (IDENT) field experiment in Sault Ste. Marie, Ontario, Canada. Four replicates of each monoculture were subjected to high or low water availability treatments. Results: Absorptive fine root density increased by 67% for Larix laricina, and 90% for Picea glauca, under the high-water availability treatment at 0-5 cm soil depth. The two late successional, slower growing tree species, Acer saccharum and Picea glauca, showed higher plasticity in absorptive fine root biomass in the upper 5 cm of soil (PIv = 0.36 & 0.54 respectively), and lower plasticity in fine root depth over the entire 30 cm soil profile compared to the early successional, faster growing tree species Betula papyrifera and Larix laricina. Conclusion: Temperate tree species show contrasting acclimation responses in absorptive fine root biomass and rooting depth to differences in water availability. Some of these responses vary with tree species successional status and seem to benefit both early and late successional tree species. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06377-w.

4.
Nat Commun ; 15(1): 2078, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453933

ABSTRACT

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.


Subject(s)
Biodiversity , Ecosystem , Plants , Biomass , Forests , Grassland
5.
Trends Plant Sci ; 29(1): 20-31, 2024 01.
Article in English | MEDLINE | ID: mdl-37735061

ABSTRACT

There are growing doubts about the true role of the common mycorrhizal networks (CMN or wood wide web) connecting the roots of trees in forests. We question the claims of a substantial carbon transfer from 'mother trees' to their offspring and nearby seedlings through the CMN. Recent reviews show that evidence for the 'mother tree concept' is inconclusive or absent. The origin of this concept seems to stem from a desire to humanize plant life but can lead to misunderstandings and false interpretations and may eventually harm rather than help the commendable cause of preserving forests. Two recent books serve as examples: The Hidden Life of Trees and Finding the Mother Tree.


Subject(s)
Mycorrhizae , Trees , Humans , Forests , Fungi , Plant Roots/microbiology , Plants , Soil
6.
PNAS Nexus ; 2(8): pgad254, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37649582

ABSTRACT

Along with forest managers, builders are key change agents of forest ecosystems' structure and composition through the specification and use of wood products. New forest management approaches are being advocated to increase the resilience and adaptability of forests to climate change and other natural disturbances. Such approaches call for a diversification of our forests based on species' functional traits that will dramatically change the harvested species composition, volume, and output of our forested landscapes. This calls for the wood-building industry to adapt its ways of operating. Accordingly, we expand the evaluation of the ecological resilience of forest ecosystems based on functional diversification to include a trait-based approach to building with wood. This trait-based plant-building framework can illustrate how forecasted forest changes in the coming decades may impact and guide decisions about wood-building practices, policies, and specifications. We apply this approach using a fragmented rural landscape in temperate southeastern Canada. We link seven functional groups based on the ecological traits of tree species in the region to a similar functional grouping of building traits to characterize the push and pull of managing forests and wood buildings together. We relied on a process-based forest landscape model to simulate long-term forest dynamics and timber harvesting to evaluate how various novel management approaches will interact with the changing global environment to affect the forest-building relationships. Our results suggest that adopting a whole system, plant-building approach to forests and wood buildings, is key to enhancing forest ecological and timber construction industry resilience.

7.
Ecology ; 104(7): e4070, 2023 07.
Article in English | MEDLINE | ID: mdl-37127925

ABSTRACT

It is commonly expected that exotic plants experience reduced herbivory, but experimental evidence for such enemy release is still controversial. One reason for conflicting results might be that community context has rarely been accounted for, although the surrounding plant diversity may moderate enemy release. Here, we tested the effects of focal tree origin and surrounding tree diversity on herbivore abundance and leaf damage in a cross-Atlantic tree-diversity experiment in Canada and Germany. We evaluated six European tree species paired with six North American congeners in both their native and exotic range, expecting lower herbivory for the exotic tree species in each pair at each site. Such reciprocal experiments have long been called for, but have not been realized thus far. In addition to a thorough evaluation of overall enemy release effects, we tested whether enemy release effects changed with the surrounding tree diversity. Herbivore abundance was indeed consistently lower on exotics across all six tree genera (12 comparisons). This effect of exotic status was independent of the continent, phylogenetic relatedness, and surrounding tree diversity. In contrast, leaf damage associated with generalist leaf chewers was consistently higher on North American tree species. Interestingly, several species of European weevils were the most abundant leaf chewers on both continents and the dominant herbivores at the Canadian site. Thus, most observed leaf damage is likely to reflect the effect of generalist herbivores that feed heavily on plant species with which they have not evolved. At the German site, sap suckers were the dominant herbivores and showed a pattern consistent with enemy release. Taken together, the consistently lower herbivory on exotics on both continents is not purely a pattern of enemy release in the strictest sense, but to some degree additionally reflects the susceptibility of native plants to invasive herbivores. In conclusion, our cross-Atlantic study is consistent with the idea that nonnative trees have generally reduced herbivory, regardless of tree community diversity and species identity, but for different reasons depending on the dominant herbivore guild.


Subject(s)
Biodiversity , Herbivory , Phylogeny , Canada , Plants , Introduced Species
8.
Sci Total Environ ; 857(Pt 3): 159717, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36302436

ABSTRACT

Litter decomposition is a key ecosystem function in forests and varies in response to a range of climatic, edaphic, and local stand characteristics. Disentangling the relative contribution of these factors is challenging, especially along large environmental gradients. In particular, knowledge of the effect of management options, such as tree planting density and species composition, on litter decomposition would be highly valuable in forestry. In this study, we made use of 15 tree diversity experiments spread over eight countries and three continents within the global TreeDivNet network. We evaluated the effects of overstory composition (tree identity, species/mixture composition and species richness), plantation conditions (density and age), and climate (temperature and precipitation) on mass loss (after 3 months and 1 year) of two standardized litters: high-quality green tea and low-quality rooibos tea. Across continents, we found that early-stage decomposition of the low-quality rooibos tea was influenced locally by overstory tree identity. Mass loss of rooibos litter was higher under young gymnosperm overstories compared to angiosperm overstories, but this trend reversed with age of the experiment. Tree species richness did not influence decomposition and explained almost no variation in our multi-continent dataset. Hence, in the young plantations of our study, overstory composition effects on decomposition were mainly driven by tree species identity on decomposer communities and forest microclimates. After 12 months of incubation, mass loss of the high-quality green tea litter was mainly influenced by temperature whereas the low-quality rooibos tea litter decomposition showed stronger relationships with overstory composition and stand age. Our findings highlight that decomposition dynamics are not only affected by climate but also by management options, via litter quality of the identity of planted trees but also by overstory composition and structure.


Subject(s)
Ecosystem , Trees , Trees/chemistry , Plant Leaves , Forests , Tea , Biodiversity , Soil/chemistry
9.
Glob Chang Biol ; 28(14): 4323-4341, 2022 07.
Article in English | MEDLINE | ID: mdl-35429213

ABSTRACT

Natural disturbances exacerbated by novel climate regimes are increasing worldwide, threatening the ability of forest ecosystems to mitigate global warming through carbon sequestration and to provide other key ecosystem services. One way to cope with unknown disturbance events is to promote the ecological resilience of the forest by increasing both functional trait and structural diversity and by fostering functional connectivity of the landscape to ensure a rapid and efficient self-reorganization of the system. We investigated how expected and unexpected variations in climate and biotic disturbances affect ecological resilience and carbon storage in a forested region in southeastern Canada. Using a process-based forest landscape model (LANDIS-II), we simulated ecosystem responses to climate change and insect outbreaks under different forest policy scenarios-including a novel approach based on functional diversification and network analysis-and tested how the potentially most damaging insect pests interact with changes in forest composition and structure due to changing climate and management. We found that climate warming, lengthening the vegetation season, will increase forest productivity and carbon storage, but unexpected impacts of drought and insect outbreaks will drastically reduce such variables. Generalist, non-native insects feeding on hardwood are the most damaging biotic agents for our region, and their monitoring and early detection should be a priority for forest authorities. Higher forest diversity driven by climate-smart management and fostered by climate change that promotes warm-adapted species, might increase disturbance severity. However, alternative forest policy scenarios led to a higher functional and structural diversity as well as functional connectivity-and thus to higher ecological resilience-than conventional management. Our results demonstrate that adopting a landscape-scale perspective by planning interventions strategically in space and adopting a functional trait approach to diversify forests is promising for enhancing ecological resilience under unexpected global change stressors.


Subject(s)
Ecosystem , Trees , Animals , Carbon , Climate Change , Forests , Insecta
10.
Glob Chang Biol ; 28(10): 3365-3378, 2022 05.
Article in English | MEDLINE | ID: mdl-35246895

ABSTRACT

Unprecedented tree dieback across Central Europe caused by recent global change-type drought events highlights the need for a better mechanistic understanding of drought-induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change-type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non-structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species-specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought-induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought-induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.


Subject(s)
Droughts , Forests , Carbon , Dehydration , Europe , Humans
11.
Ecol Lett ; 25(4): 851-862, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35106898

ABSTRACT

Although there is compelling evidence that tree diversity has an overall positive effect on forest productivity, there are important divergences among studies on the nature and strength of these diversity effects and their timing during forest stand development. To clarify conflicting results related to stand developmental stage, we explored how diversity effects on productivity change through time in a diversity experiment spanning 11 years. We show that the strength of diversity effects on productivity progressively increases through time, becoming significantly positive after 9 years. Moreover, we demonstrate that the strengthening of diversity effects is driven primarily by gradual increases in complementarity. We also show that mixing species with contrasting resource-acquisition strategies, and the dominance of deciduous, fast-developing species, promote positive diversity effects on productivity. Our results suggest that the canopy closure and subsequent stem exclusion phase are key for promoting niche complementarity in diverse tree communities.


Subject(s)
Biodiversity , Trees , Biomass , Forests
12.
Ecol Evol ; 12(2): e8534, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35222947

ABSTRACT

One of the most important drivers for the coexistence of plant species is the resource heterogeneity of a certain environment, and several studies in different ecosystems have supported this resource heterogeneity-diversity hypothesis. However, to date, only a few studies have measured heterogeneity of light and soil resources below forest canopies to investigate their influence on understory plant species richness. Here, we aim to determine (1) the influence of forest stand structural complexity on the heterogeneity of light and soil resources below the forest canopy and (2) whether heterogeneity of resources increases understory plant species richness. Measures of stand structural complexity were obtained through inventories and remote sensing techniques in 135 1-ha study plots of temperate forests, established along a gradient of forest structural complexity. We measured light intensity and soil chemical properties on six 25 m² subplots on each of these 135 plots and surveyed understory vegetation. We calculated the coefficient of variation of light and soil parameters to obtain measures of resource heterogeneity and determined understory plant species richness at plot level. Spatial heterogeneity of light and of soil pH increased with higher stand structural complexity, although heterogeneity of soil pH did not increase in conditions of generally high levels of light availability. Increasing light heterogeneity was also associated with increasing understory plant species richness. However, light heterogeneity had no such effects in conditions where soil resource heterogeneity (variation in soil C:N ratios) was low. Our results support the resource heterogeneity-diversity hypothesis for temperate forest understory at the stand scale. Our results also highlight the importance of interaction effects between the heterogeneity of both light and soil resources in determining plant species richness.

13.
Trends Ecol Evol ; 37(5): 454-467, 2022 05.
Article in English | MEDLINE | ID: mdl-35065823

ABSTRACT

The biodiversity-ecosystem functioning concept asserts that processes in ecosystems are markedly influenced by species richness and other facets of biodiversity. However, biodiversity-ecosystem functioning studies have been largely restricted to single ecosystems, ignoring the importance of functional links - such as the exchange of matter, energy, and organisms - between coupled ecosystems. Here we present a basic concept and outline three pathways of cross-boundary biodiversity effects on ecosystem processes and propose an agenda to assess such effects, focusing on terrestrial-aquatic linkages to illustrate the case. This cross-boundary perspective of biodiversity-ecosystem functioning relationships presents a promising frontier for biodiversity and ecosystem science with repercussions for the conservation, restoration, and management of biodiversity and ecosystems from local to landscape scales.


Subject(s)
Biodiversity , Ecosystem
14.
Front Plant Sci ; 12: 715399, 2021.
Article in English | MEDLINE | ID: mdl-34421968

ABSTRACT

Trees that grow in urban areas are confronted with a wide variety of stresses that undermine their long-term survival. These include mechanical damage to the crown, root reduction and stem injury, all of which remove significant parts of plant tissues. The single or combined effects of these stresses generate a complex array of growth and ecophysiological responses that are hard to predict. Here we evaluated the effects of different individual and combined damage on the dynamics of non-structural carbohydrates (NSC, low weight sugars plus starch) concentration and new tissue growth (diameter increment) in young trees. We hypothesized that (i) tissue damage will induce larger reductions in diameter growth than in NSC concentrations and (ii) combinations of stress treatments that minimally alter the "functional equilibrium" (e.g., similar reductions of leaf and root area) would have the least impact on NSC concentrations (although not on growth) helping to maintain tree health and integrity. To test these hypotheses, we set up a manipulative field experiment with 10-year-old trees of common urban species (Celtis occidentalis, Fraxinus pennsylvanica, and Tilia cordata). These trees were treated with a complete array of mechanical damage combinations at different levels of intensity (i.e., three levels of defoliation and root reduction, and two levels of stem damage). We found that tree growth declined in relation to the total amount of stress inflicted on the trees, i.e., when the combined highest level of stress was applied, but NSC concentrations were either not affected or, in some cases, increased with an increasing level of stress. We did not find a consistent response in concentration of reserves in relation to the combined stress treatments. Therefore, trees appear to reach a new "functional equilibrium" that allows them to adjust their levels of carbohydrate reserves, especially in stems and roots, to meet their metabolic demand under stressful situations. Our results provide a unique insight into the carbon economy of trees facing multiple urban stress conditions in order to better predict long-term tree performance and vitality.

15.
Biol Rev Camb Philos Soc ; 96(4): 1301-1317, 2021 08.
Article in English | MEDLINE | ID: mdl-33663020

ABSTRACT

Forest loss and degradation are the greatest threats to biodiversity worldwide. Rising global wood demand threatens further damage to remaining native forests. Contrasting solutions across a continuum of options have been proposed, yet which of these offers most promise remains unresolved. Expansion of high-yielding tree plantations could free up forest land for conservation provided this is implemented in tandem with stronger policies for conserving native forests. Because plantations and other intensively managed forests often support far less biodiversity than native forests, a second approach argues for widespread adoption of extensive management, or 'ecological forestry', which better simulates natural forest structure and disturbance regimes - albeit with compromised wood yields and hence a need to harvest over a larger area. A third, hybrid suggestion involves 'Triad' zoning where the landscape is divided into three sorts of management (reserve, ecological/extensive management, and intensive plantation). Progress towards resolving which of these approaches holds the most promise has been hampered by the absence of a conceptual framework and of sufficient empirical data formally to identify the most appropriate landscape-scale proportions of reserves, extensive, and intensive management to minimize biodiversity impacts while meeting a given level of demand for wood. In this review, we argue that this central challenge for sustainable forestry is analogous to that facing food-production systems, and that the land sharing-sparing framework devised to establish which approach to farming could meet food demand at least cost to wild species can be readily adapted to assess contrasting forest management regimes. We develop this argument in four ways: (i) we set out the relevance of the sharing-sparing framework for forestry and explore the degree to which concepts from agriculture can translate to a forest management context; (ii) we make design recommendations for empirical research on sustainable forestry to enable application of the sharing-sparing framework; (iii) we present overarching hypotheses which such studies could test; and (iv) we discuss potential pitfalls and opportunities in conceptualizing landscape management through a sharing-sparing lens. The framework we propose will enable forest managers worldwide to assess trade-offs directly between conservation and wood production and to determine the mix of management approaches that best balances these (and other) competing objectives. The results will inform ecologically sustainable forest policy and management, reduce risks of local and global extinctions from forestry, and potentially improve a valuable sector's social license to operate.


Subject(s)
Conservation of Natural Resources , Wood , Biodiversity , Forestry , Forests , Trees
16.
Ecol Lett ; 24(5): 996-1006, 2021 May.
Article in English | MEDLINE | ID: mdl-33657676

ABSTRACT

Diverse plant communities are often more productive than mono-specific ones. Several possible mechanisms underlie this phenomenon but their relative importance remains unknown. Here we investigated whether light interception alone or in combination with light use efficiency (LUE) of dominant and subordinate species explained greater productivity of mixtures relative to monocultures (i.e. overyielding) in 108 young experimental tree communities. We found mixed-species communities that intercepted more light than their corresponding monocultures had 84% probability of overyielding. Enhanced LUE, which arose via several pathways, also mattered: the probability of overyielding was 71% when, in a mixture, species with higher 'inherent' LUE (i.e. LUE in monoculture) intercepted more light than species with lower LUE; 94% when dominant species increased their LUE in mixture; and 79% when subordinate species increased their LUE. Our results suggest that greater light interception and greater LUE, generated by inter and intraspecific variation, together drive overyielding in mixed-species forests.


Subject(s)
Biodiversity , Forests , Biomass , Plants
17.
Nat Ecol Evol ; 5(1): 46-54, 2021 01.
Article in English | MEDLINE | ID: mdl-33139920

ABSTRACT

Quantifying how biodiversity affects ecosystem functions through time over large spatial extents is needed for meeting global biodiversity goals yet is infeasible with field-based approaches alone. Imaging spectroscopy is a tool with potential to help address this challenge. Here, we demonstrate a spectral approach to assess biodiversity effects in young forests that provides insight into its underlying drivers. Using airborne imaging of a tree-diversity experiment, spectral differences among stands enabled us to quantify net biodiversity effects on stem biomass and canopy nitrogen. By subsequently partitioning these effects, we reveal how distinct processes contribute to diversity-induced differences in stand-level spectra, chemistry and biomass. Across stands, biomass overyielding was best explained by species with greater leaf nitrogen dominating upper canopies in mixtures, rather than intraspecific shifts in canopy structure or chemistry. Remote imaging spectroscopy may help to detect the form and drivers of biodiversity-ecosystem function relationships across space and time, advancing the capacity to monitor and manage Earth's ecosystems.


Subject(s)
Ecosystem , Forests , Biodiversity , Biomass , Trees
18.
Ecol Appl ; 31(1): e2221, 2021 01.
Article in English | MEDLINE | ID: mdl-32866316

ABSTRACT

Forests are projected to undergo dramatic compositional and structural shifts prompted by global changes, such as climatic changes and intensifying natural disturbance regimes. Future uncertainty makes planning for forest management exceptionally difficult, demanding novel approaches to maintain or improve the ability of forest ecosystems to respond and rapidly reorganize after disturbance events. Adopting a landscape perspective in forest management is particularly important in fragmented forest landscapes where both diversity and connectivity play key roles in determining resilience to global change. In this context, network analysis and functional traits combined with ecological dynamic modeling can help evaluate changes in functional response diversity and connectivity within and among forest stands in fragmented landscapes. Here, we coupled ecological dynamic modeling with functional traits analysis and network theory to analyze forested landscapes as an interconnected network of forest patches. We simulated future forest landscape dynamics in a large landscape in southern Quebec, Canada, under a combination of climate, disturbance, and management scenarios. We depicted the landscape as a functional network, assessed changes in future resilience using indicators at multiple spatial scales, and evaluated if current management practices are suitable for maintaining resilience to simulated changes in regimes. Our results show that climate change would promote forest productivity and favor heat-adapted deciduous species. Changes in natural disturbances will likely have negative impacts on native conifers and will drive changes in forest type composition. Climate change negatively impacted all resilience indicators and triggered losses of functional response diversity and connectivity across the landscape with undesirable consequences on the capacity of these forests to adapt to global change. Also, current management strategies failed to promote resilience at different spatial levels, highlighting the need for a more active and thoughtful approach to forest management under global change. Our study demonstrates the usefulness of combining dynamic landscape-scale simulation modeling with network analyses to evaluate the possible impacts of climate change as well as human and natural disturbances on forest resilience under global change.


Subject(s)
Ecosystem , Forests , Canada , Climate Change , Humans , Quebec
19.
Ecol Appl ; 30(5): e02095, 2020 07.
Article in English | MEDLINE | ID: mdl-32080941

ABSTRACT

Ecosystem functions provided by forests are threatened by direct and indirect effects of global change drivers such as climate warming land-use change, biological invasions, and shifting natural disturbance regimes. To develop resilience-based forest management, new tools and methods are needed to quantitatively estimate forest resilience to management and future natural disturbances. We propose a multidimensional evaluation of ecological resilience based on species functional response traits (e.g., functional response diversity and functional redundancy) and network properties of forested patches (e.g., connectivity, modularity, and centrality). Using a fragmented rural landscape in temperate south-eastern Canada as a reference landscape, we apply our multidimensional approach to evaluate two alternative management strategies at three levels of intensity: (1) functional enrichment of current forest patches and (2) multi-species plantations in previously non-forested patches. Within each management strategy, planted species are selected to maximize functional diversity, drought tolerance, or pest resistance. We further compare how ecological resilience under these alternative management strategies responds to three simulated disturbances: drought, pest outbreak, and timber harvesting. We found that both management strategies enhance resilience at the landscape scale by increasing functional response diversity and connectivity. Specifically, when the less functionally diverse patches are prioritized for management, functional enrichment is more effective than the establishment of new multi-species plantations in increasing resilience. In addition, randomly allocated multi-species plantations increased connectivity more than those allocated in riparian areas. Our results show that across various management strategies, planting species to enhance biodiversity led to the highest increase in functional response diversity while planting pest-resistant species led to the highest increase in landscape connectivity. Planting biodiversity-enhancing species (i.e., species that maximize functional diversity) mitigated drought effects equally well as planting with drought-tolerant species. Our multidimensional approach facilitates the characterization at the landscape scale of forest resilience to disturbances using both functional diversity and network properties while accounting for the importance of response traits to future disturbances. The simulation approach we used can be applied to forest landscapes across different biomes for the evaluation and comparison of forest management initiatives to enhance resilience.


Subject(s)
Ecosystem , Forests , Animals , Biodiversity , Canada , Climate Change
20.
Ambio ; 49(1): 85-97, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31055795

ABSTRACT

Retention forestry implies that biological legacies like dead and living trees are deliberately selected and retained beyond harvesting cycles to benefit biodiversity and ecosystem functioning. This model has been applied for several decades in even-aged, clearcutting (CC) systems but less so in uneven-aged, continuous-cover forestry (CCF). We provide an overview of retention in CCF in temperate regions of Europe, currently largely focused on habitat trees and dead wood. The relevance of current meta-analyses and many other studies on retention in CC is limited since they emphasize larger patches in open surroundings. Therefore, we reflect here on the ecological foundations and socio-economic frameworks of retention approaches in CCF, and highlight several areas with development potential for the future. Conclusions from this perspective paper, based on both research and current practice on several continents, although highlighting Europe, are also relevant to other temperate regions of the world using continuous-cover forest management approaches.


Subject(s)
Ecosystem , Forestry , Biodiversity , Conservation of Natural Resources , Europe , Forests , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...