Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 300(1): 349-65, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17027739

ABSTRACT

Echinoderms occupy a critical and largely unexplored phylogenetic vantage point from which to infer both the early evolution of bilaterian immunity and the underpinnings of the vertebrate adaptive immune system. Here we present an initial survey of the purple sea urchin genome for genes associated with immunity. An elaborate repertoire of potential immune receptors, regulators and effectors is present, including unprecedented expansions of innate pathogen recognition genes. These include a diverse array of 222 Toll-like receptor (TLR) genes and a coordinate expansion of directly associated signaling adaptors. Notably, a subset of sea urchin TLR genes encodes receptors with structural characteristics previously identified only in protostomes. A similarly expanded set of 203 NOD/NALP-like cytoplasmic recognition proteins is present. These genes have previously been identified only in vertebrates where they are represented in much lower numbers. Genes that mediate the alternative and lectin complement pathways are described, while gene homologues of the terminal pathway are not present. We have also identified several homologues of genes that function in jawed vertebrate adaptive immunity. The most striking of these is a gene cluster with similarity to the jawed vertebrate Recombination Activating Genes 1 and 2 (RAG1/2). Sea urchins are long-lived, complex organisms and these findings reveal an innate immune system of unprecedented complexity. Whether the presumably intense selective processes that molded these gene families also gave rise to novel immune mechanisms akin to adaptive systems remains to be seen. The genome sequence provides immediate opportunities to apply the advantages of the sea urchin model toward problems in developmental and evolutionary immunobiology.


Subject(s)
Genome , Immunity/genetics , Sea Urchins/genetics , Sea Urchins/immunology , Animals , Complement System Proteins/genetics , Cytokines/genetics , Phylogeny , Receptors, Scavenger/genetics , Sea Urchins/classification , Signal Transduction/genetics , Signal Transduction/immunology , Vertebrates/immunology
2.
Proc Natl Acad Sci U S A ; 103(10): 3728-33, 2006 Mar 07.
Article in English | MEDLINE | ID: mdl-16505374

ABSTRACT

The diversity of antigen receptors in the adaptive immune system of jawed vertebrates is generated by a unique process of somatic gene rearrangement known as V(D)J recombination. The Rag1 and Rag2 proteins are the key mediators of this process. They are encoded by a compact gene cluster that has exclusively been identified in animal species displaying V(D)J-mediated immunity, and no homologous gene pair has been identified in other organisms. This distinctly restricted phylogenetic distribution has led to the hypothesis that one or both of the Rag genes were coopted after horizontal gene transfer and assembled into a Rag1/2 gene cluster in a common jawed vertebrate ancestor. Here, we identify and characterize a closely linked pair of genes, SpRag1L and SpRag2L, from an invertebrate, the purple sea urchin (Strongylocentrotus purpuratus) with similarity in both sequence and genomic organization to the vertebrate Rag1 and Rag2 genes. They are coexpressed during development and in adult tissues, and recombinant versions of the proteins form a stable complex with each other as well as with Rag1 and Rag2 proteins from several vertebrate species. We thus conclude that SpRag1L and SpRag2L represent homologs of vertebrate Rag1 and Rag2. In combination with the apparent absence of V(D)J recombination in echinoderms, this finding strongly suggests that linked Rag1- and Rag2-like genes were already present and functioning in a different capacity in the common ancestor of living deuterostomes, and that their specific role in the adaptive immune system was acquired much later in an early jawed vertebrate.


Subject(s)
DNA-Binding Proteins/genetics , Evolution, Molecular , Genes, RAG-1 , Homeodomain Proteins/genetics , Amino Acid Sequence , Animals , Gene Expression , Genetic Linkage , Mice , Molecular Sequence Data , Multigene Family , Recombinant Fusion Proteins/genetics , Sequence Homology, Amino Acid , Strongylocentrotus purpuratus/genetics , Strongylocentrotus purpuratus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...