Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(10): e31221, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813157

ABSTRACT

In this novel research, S-scheme Ag2CrO4/g-C3N4 heterojunctions were generated by sonochemical hybridization of different compositions of Ag2CrO4 nanoparticles [EVB = +2.21 eV] and g-C3N4 sheets [ECB = -1.3 eV] for destructing RhB dye under artificial solar radiation. The as-synthesized nanocomposites were subjected to X-ray diffraction [XRD], diffuse reflectance spectrum [DRS], X-ray photoelectron spectroscopy [XPS], N2-adsorption-desorption isotherm, photoluminescence [PL] and high resolution transmission electron microscope [HRTEM] analysis to explore the interfacial interactions between g-C3N4 sheets and Ag2CrO4 nanoparticles. Spherical Ag2CrO4 nanoparticles deposited homogeneously on the wrinkles points of g-C3N4 sheets at nearly equidistant from each other facilitating the uniform absorption of solar radiations. The absorbability of solar radiations was enhanced by introducing 20 wt % Ag2CrO4 on g-C3N4 sheets. The surface area of g-C3N4 sheets was reduced from 37.5 to 16.4 m2/g and PL signal intensity diminished by 80 % implying the successful interfacial interaction between Ag2CrO4 nanoparticles and g-C3N4 sheets. The photocatalytic performance of heterojunctions containing 20 % Ag2CrO4 and 80 % g-C3N4 destructed 96 % of RhB dye compared with 60 and 33 % removal on the surface of pristine g-C3N4 sheets and Ag2CrO4, respectively. Benzoquinone and ammonium oxalate are strongly scavenged the dye decomposition revealing the strong influence of valence band holes of Ag2CrO4 and superoxide radicals in destructing RhB dye under solar radiations. S-scheme charge transportation mechanism was suggested rather than type II heterojunction on the light of scavenger trapping experiments results and PL spectrum of terephthalic acid. Overall, this research work illustrated the manipulation of novel S-scheme heterojunction with efficient redox power for destructing various organic pollutants persisted in water resources.

2.
RSC Adv ; 13(47): 32972, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38025881

ABSTRACT

Expression of Concern for 'The controlled synthesis and DFT investigation of novel (0D)-(3D) ZnS/SiO2 heterostructures for photocatalytic applications' by Mohamed F. Sanad et al., RSC Adv., 2021, 11, 22352-22364, https://doi.org/10.1039/D1RA02284A.

3.
RSC Adv ; 13(19): 13269-13281, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37124000

ABSTRACT

In this research, S-scheme heterojunctions composed of different concentrations of CuO and ZnO nanoparticles are fabricated for eradicating rhodamine B dye under solar radiation. ZnO nanoparticles are designed through a facile sol-gel route employing Triton X-100. Spherical CuO nanoparticles of 15.2 nm and 1.5 eV band gap energy are deposited on ZnO nanoparticles in an ultrasonic bath of 300 W intensity. The physicochemical performance of the photocatalyst is explored by HRTEM, SAED, BET, XRD, DRS and PL. The in situ homogeneous growth of spherical CuO nanoparticles on ZnO active centers shifts the photocatalytic response to the deep visible region and enhances the efficiency of charge carrier separation and transportation. Among all heterojunctions, ZnCu10 containing 10 wt% CuO displays the best photocatalytic rate for expelling 93% of RhB dye within 240 min, which is twenty-fold higher than that of pristine ZnO and CuO. Reactive oxygen species are the predominant species in degrading the dye pollutant on the heterojunction surface, as shown from scrubber trapping experiments and PL spectrum of terephthalic acid. Coupling ZnO as an oxidative photocatalyst and CuO as a reductive photocatalyst generates an efficient S-scheme heterojunction with strong redox power in destructing various organic pollutants.

4.
RSC Adv ; 11(36): 22352-22364, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-35480787

ABSTRACT

A ZnS/SiO2 photocatalyst was synthesized using a low-cost sol-gel wet chemical procedure. The as-synthesized ZnS/SiO2 nanocomposites with different molar ratios exhibited superior performance in the photodegradation of two organic dyes under UV irradiation, with complete degradation of both dyes after 2 hours of exposure to UV irradiation. The photocatalyst structure, microstructure, and surface area were studied using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), and nitrogen adsorption (S BET) studies. The results demonstrate that the ZnS/SiO2 photocatalyst with 15% ZnS content has a bandgap energy similar to that of ZnS alone with a higher surface area of approximately 150 m2 g-1, which effectively increases the number of active sites and improves the photocatalytic activity of the prepared material. The measured bandgap energies were compared with the theoretical values obtained using the density functional theory (DFT) method, and the values were found to be very similar, with a low error percentage. In the case of a high ZnS content (greater than 15%), active site blocking occurred, and the removal rate dropped below 50%. The obtained results indicate that the photocatalytic data are in good agreement with the experimental characterization results for the prepared materials, including the BET and XRD results, confirming a close association between the photocatalytic activity and the surface area of the fabricated photocatalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...