Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Scand J Immunol ; 93(2): e12987, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33047342

ABSTRACT

The first months of life represent a crucial time period for an infant. Alongside establishing the early microbiome, the mucosal immunological homeostasis is being developed. Both processes may be perturbed in prematurely born infants. The glycoprotein SALSA plays a role in mucosal inflammation and microbial clearance. It is one of the most abundant molecules on the intestinal mucosal surfaces in early life. SALSA binds to many types of microbes and host defence molecules like IgA, C1q and collectin molecules. We here describe the development in faecal SALSA levels during the first three months of life. During these 90 days, the median SALSA level in full-term babies decreased from 1100 µg/mL (range 49-17 000 µg/mL) to 450 µg/mL (range 33-1000 µg/mL). Lower levels of SALSA were observed in prematurely born infants in the same time period. Our novel observation thus indicates an impact of prematurity on an important component of the infant intestinal immune system. Changes in SALSA in early life may have an effect on the early establishment of the human microbiome.


Subject(s)
Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Infant, Premature/metabolism , Intestinal Mucosa/metabolism , Tumor Suppressor Proteins/metabolism , Complement C1q/metabolism , Feces , Female , Homeostasis/physiology , Humans , Immunoglobulin A/metabolism , Infant, Newborn , Inflammation/metabolism , Male
2.
Gastroenterology ; 158(6): 1667-1681.e12, 2020 05.
Article in English | MEDLINE | ID: mdl-32032584

ABSTRACT

BACKGROUND & AIMS: Celiac disease could be treated, and potentially cured, by restoring T-cell tolerance to gliadin. We investigated the safety and efficacy of negatively charged 500-nm poly(lactide-co-glycolide) nanoparticles encapsulating gliadin protein (TIMP-GLIA) in 3 mouse models of celiac disease. Uptake of these nanoparticles by antigen-presenting cells was shown to induce immune tolerance in other animal models of autoimmune disease. METHODS: We performed studies with C57BL/6; RAG1-/- (C57BL/6); and HLA-DQ8, huCD4 transgenic Ab0 NOD mice. Mice were given 1 or 2 tail-vein injections of TIMP-GLIA or control nanoparticles. Some mice were given intradermal injections of gliadin in complete Freund's adjuvant (immunization) or of soluble gliadin or ovalbumin (ear challenge). RAG-/- mice were given intraperitoneal injections of CD4+CD62L-CD44hi T cells from gliadin-immunized C57BL/6 mice and were fed with an AIN-76A-based diet containing wheat gluten (oral challenge) or without gluten. Spleen or lymph node cells were analyzed in proliferation and cytokine secretion assays or by flow cytometry, RNA sequencing, or real-time quantitative polymerase chain reaction. Serum samples were analyzed by gliadin antibody enzyme-linked immunosorbent assay, and intestinal tissues were analyzed by histology. Human peripheral blood mononuclear cells, or immature dendritic cells derived from human peripheral blood mononuclear cells, were cultured in medium containing TIMP-GLIA, anti-CD3 antibody, or lipopolysaccharide (controls) and analyzed in proliferation and cytokine secretion assays or by flow cytometry. Whole blood or plasma from healthy volunteers was incubated with TIMP-GLIA, and hemolysis, platelet activation and aggregation, and complement activation or coagulation were analyzed. RESULTS: TIMP-GLIA did not increase markers of maturation on cultured human dendritic cells or induce activation of T cells from patients with active or treated celiac disease. In the delayed-type hypersensitivity (model 1), the HLA-DQ8 transgenic (model 2), and the gliadin memory T-cell enteropathy (model 3) models of celiac disease, intravenous injections of TIMP-GLIA significantly decreased gliadin-specific T-cell proliferation (in models 1 and 2), inflammatory cytokine secretion (in models 1, 2, and 3), circulating gliadin-specific IgG/IgG2c (in models 1 and 2), ear swelling (in model 1), gluten-dependent enteropathy (in model 3), and body weight loss (in model 3). In model 1, the effects were shown to be dose dependent. Splenocytes from HLA-DQ8 transgenic mice given TIMP-GLIA nanoparticles, but not control nanoparticles, had increased levels of FOXP3 and gene expression signatures associated with tolerance induction. CONCLUSIONS: In mice with gliadin sensitivity, injection of TIMP-GLIA nanoparticles induced unresponsiveness to gliadin and reduced markers of inflammation and enteropathy. This strategy might be developed for the treatment of celiac disease.


Subject(s)
Celiac Disease/drug therapy , Gliadin/administration & dosage , Immune Tolerance/drug effects , Nanoparticles/administration & dosage , Administration, Intravenous , Animals , CD4-Positive T-Lymphocytes , Celiac Disease/blood , Celiac Disease/immunology , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Gliadin/immunology , Gliadin/toxicity , Glutens/administration & dosage , Glutens/immunology , HLA-DQ Antigens/genetics , HLA-DQ Antigens/immunology , Humans , Intestinal Mucosa , Leukocytes, Mononuclear , Mice , Mice, Transgenic , Nanoparticles/chemistry , Nanoparticles/toxicity , Polyglactin 910/chemistry , Primary Cell Culture , Toxicity Tests, Acute
3.
PLoS One ; 11(3): e0151824, 2016.
Article in English | MEDLINE | ID: mdl-26985831

ABSTRACT

Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role in immune interaction with the host is less established. Gram-positive pili are often posttranslationally modified by sortase-specific cleavage reactions and the formation of intramolecular peptide bonds. Here we report glycosylation as a new level of posttranslational modification of sortase-dependent pili of a beneficial microbiota species and its role in immune modulation. We focused on the SpaCBA pili of the model probiotic and beneficial human gut microbiota isolate Lactobacillus rhamnosus GG. A unique combination of molecular techniques, nanoscale mechanical and immunological approaches led to the identification of mannose and fucose residues on the SpaCBA pili. These glycans on the pili are recognized by human dendritic cells via the C-type lectin receptor DC-SIGN, a key carbohydrate-dependent immune tailoring pattern recognition receptor. This specific lectin-sugar interaction is moreover of functional importance and modulated the cytokine response of dendritic cells. This provides insight into the direct role bacterial glycoproteins can play in the immunomodulation of the host. Modification of the complex heterotrimeric pili of a model probiotic and microbiota isolate with mannose and fucose is of importance for the functional interaction with the host immune lectin receptor DC-SIGN on human dendritic cells. Our findings shed light on the yet underappreciated role of glycoconjugates in bacteria-host interactions.


Subject(s)
Bacterial Proteins/metabolism , Dendritic Cells/metabolism , Fimbriae, Bacterial/metabolism , Gastrointestinal Microbiome/physiology , Lacticaseibacillus rhamnosus/metabolism , Bacterial Adhesion/physiology , Glycosylation , Humans
4.
Am J Physiol Gastrointest Liver Physiol ; 306(6): G526-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24458020

ABSTRACT

UNLABELLED: The current treatment for celiac disease is strict gluten-free diet. Technical processing may render gluten-containing foods safe for consumption by celiac patients, but so far in vivo safety testing can only be performed on patients. We modified a celiac disease mouse model to test antigenicity and inflammatory effects of germinated rye sourdough, a food product characterized by extensive prolamin hydrolysis. Lymphopenic Rag1-/- or nude mice were injected with splenic CD4+CD62L-CD44high-memory T cells from gliadin- or secalin-immunized wild-type donor mice. We found that: 1) Rag1-/- recipients challenged with wheat or rye gluten lost more body weight and developed more severe histological duodenitis than mice on gluten-free diet. This correlated with increased secretion of IFNγ, IL-2, and IL-17 by secalin-restimulated splenocytes. 2) In vitro gluten testing using competitive R5 ELISA demonstrated extensive degradation of the gluten R5 epitope in germinated rye sourdough. 3) However, in nude recipients challenged with germinated rye sourdough (vs. native rye sourdough), serum anti-secalin IgG/CD4+ T helper 1-associated IgG2c titers were only reduced, but not eliminated. In addition, there were no reductions in body weight loss, histological duodenitis, or T cell cytokine secretion in Rag1-/- recipients challenged accordingly. IN CONCLUSION: 1) prolamin-primed CD4+CD62L-CD44high-memory T cells induce gluten-sensitive enteropathy in Rag1-/- mice. 2) Hydrolysis of secalins in germinated rye sourdough remains incomplete. Secalin peptides retain B and T cell stimulatory capacity and remain harmful to the intestinal mucosa in this celiac disease model. 3) Current antibody-based prolamin detection methods may fail to detect antigenic gluten fragments in processed cereal food products.


Subject(s)
Celiac Disease/immunology , Secale/chemistry , Adoptive Transfer , Animals , Anti-Bacterial Agents/therapeutic use , Diet, Gluten-Free , Duodenitis/drug therapy , Duodenitis/immunology , Germination , Glutens/immunology , Intestines/microbiology , Male , Mice , Prolamins , Secale/growth & development , Secale/immunology , T-Lymphocytes/immunology
5.
PLoS Genet ; 9(8): e1003683, 2013.
Article in English | MEDLINE | ID: mdl-23966868

ABSTRACT

Lactobacillus rhamnosus is a lactic acid bacterium that is found in a large variety of ecological habitats, including artisanal and industrial dairy products, the oral cavity, intestinal tract or vagina. To gain insights into the genetic complexity and ecological versatility of the species L. rhamnosus, we examined the genomes and phenotypes of 100 L. rhamnosus strains isolated from diverse sources. The genomes of 100 L. rhamnosus strains were mapped onto the L. rhamnosus GG reference genome. These strains were phenotypically characterized for a wide range of metabolic, antagonistic, signalling and functional properties. Phylogenomic analysis showed multiple groupings of the species that could partly be associated with their ecological niches. We identified 17 highly variable regions that encode functions related to lifestyle, i.e. carbohydrate transport and metabolism, production of mucus-binding pili, bile salt resistance, prophages and CRISPR adaptive immunity. Integration of the phenotypic and genomic data revealed that some L. rhamnosus strains possibly resided in multiple niches, illustrating the dynamics of bacterial habitats. The present study showed two distinctive geno-phenotypes in the L. rhamnosus species. The geno-phenotype A suggests an adaptation to stable nutrient-rich niches, i.e. milk-derivative products, reflected by the alteration or loss of biological functions associated with antimicrobial activity spectrum, stress resistance, adaptability and fitness to a distinctive range of habitats. In contrast, the geno-phenotype B displays adequate traits to a variable environment, such as the intestinal tract, in terms of nutrient resources, bacterial population density and host effects.


Subject(s)
Genome, Bacterial , Lacticaseibacillus rhamnosus/genetics , Phylogeny , Animals , Genetic Association Studies , Genomics , Lacticaseibacillus rhamnosus/classification , Milk/microbiology , Phenotype , Population Density
6.
Nephrol Dial Transplant ; 25(8): 2437-46, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20237062

ABSTRACT

BACKGROUND: Glomerular slit diaphragm (SD) represents a modified adherens junction composed of molecules belonging to both immunoglobulin and cadherin superfamilies. Cadherins associate with the cytosolic scaffolding protein beta-catenin, but the precise role of beta-catenin in mature or injured podocytes is not known. METHODS: The conditional podocyte-specific beta-catenin-deficient mouse line was generated using the doxycycline-inducible Cre-loxP system. Expression of the beta-catenin-deficient gene was turned off at the age of 8 weeks by doxycycline treatment and the kidney phenotype was analysed. In addition, beta-catenin-deficient and control mice were treated with adriamycin (ADR) and analysed for albuminuria and morphological alterations. RESULTS: Deletion of beta-catenin in mature podocytes did not change the morphology of podocytes nor did it lead to albuminuria. However, lack of beta-catenin attenuated albuminuria after ADR treatment. Electron microscopic examination showed increased podocyte foot process effacement associated with SD abnormalities in ADR-treated control mice compared to beta-catenin-deficient mice. CONCLUSIONS: These results show that beta-catenin in podocytes is dispensable for adult mice, but appears to be important in modulating the SD during ADR-induced perturbation of the filtration barrier.


Subject(s)
Albuminuria/chemically induced , Albuminuria/prevention & control , Antibiotics, Antineoplastic/adverse effects , Doxorubicin/adverse effects , Kidney Glomerulus/physiopathology , beta Catenin/physiology , Albuminuria/physiopathology , Animals , Antibiotics, Antineoplastic/pharmacology , Cadherins/metabolism , Disease Models, Animal , Doxorubicin/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Phenotype , Podocytes/drug effects , Podocytes/metabolism , beta Catenin/genetics
7.
Am J Pathol ; 176(1): 51-63, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19948823

ABSTRACT

Mutations leading to nephrin loss result in massive proteinuria both in humans and mice. Early perinatal lethality of conventional nephrin knockout mice makes it impossible to determine the role of nephrin protein in the adult kidney and in extra-renal tissues. Herein, we studied whether podocyte-specific, doxycycline-inducible, rat nephrin expression can rescue nephrin-deficient mice from perinatal lethality. Fourteen littermates out of 72 lacked endogenous nephrin and expressed transgenic rat nephrin. Six of these rescued mice survived until 6 weeks of age, whereas the nephrin-deficient pups died before the age of 5 days. The rescued mice were smaller, developed proteinuria, and showed histological abnormalities in the kidney. Despite foot process effacement, slit diaphragms were observed. Importantly, the expression and localization of several proteins associated with the signaling capacity of nephrin or the regulation of the expression of nephrin were changed in the podocytes. Indeed, all rescued mice showed impaired locomotor activity and distinct histological abnormalities in the cerebellum, and the male mice were also infertile and showed genital malformations. These observations are consistent with normal nephrin expression in the testis and cerebellum. These observations indicate that podocyte-specific expression of rat nephrin can rescue nephrin-deficient mice from perinatal death, but is not sufficient for full complementation.


Subject(s)
Membrane Proteins/deficiency , Membrane Proteins/genetics , Podocytes/metabolism , Transgenes/genetics , Animals , Behavior, Animal/drug effects , Body Weight/drug effects , Doxycycline/pharmacology , Fluorescent Antibody Technique , Gene Expression Regulation/drug effects , Genotype , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney/ultrastructure , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Organ Specificity/drug effects , Organ Specificity/genetics , Perinatal Mortality , Phenotype , Podocytes/drug effects , Podocytes/pathology , Podocytes/ultrastructure , Proteinuria/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...