Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Vaccine Immunol ; 21(2): 119-25, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24256623

ABSTRACT

Pertussis has shown a striking resurgence in the United States, with a return to record numbers of reported cases as last observed in the 1950s. Bordetella pertussis isolates lacking pertactin, a key antigen component of the acellular pertussis vaccine, have been observed, suggesting that B. pertussis is losing pertactin in response to vaccine immunity. Screening of 1,300 isolates from outbreak and surveillance studies (historical isolates collected from 1935 up to 2009, isolates from the 2010 California pertussis outbreak, U.S. isolates from routine surveillance between 2010-2012, and isolates from the 2012 Washington pertussis outbreak) by conventional PCR and later by Western blotting and prn sequencing analyses ultimately identified 306 pertactin-deficient isolates. Of these pertactin-deficient strains, 276 were identified as having an IS481 in the prn gene (prnIS481 positive). The first prnIS481-positive isolate was found in 1994, and the next prnIS481-positive isolates were not detected until 2010. The prevalence of pertactin-deficient isolates increased substantially to more than 50% of collected isolates in 2012. Sequence analysis of pertactin-deficient isolates revealed various types of mutations in the prn gene, including two deletions, single nucleotide substitutions resulting in a stop codon, an inversion in the promoter, and a single nucleotide insertion resulting in a frameshift mutation. All but one mutation type were found in prn2 alleles. CDC 013 was a predominant pulsed-field gel electrophoresis (PFGE) profile in the pertactin-positive isolates (203/994) but was found in only 5% (16/306) of the pertactin-deficient isolates. Interestingly, PFGE profiles CDC 002 and CDC 237 represented 55% (167/306) of the identified pertactin-deficient isolates. These results indicate that there has been a recent dramatic increase in pertactin-deficient B. pertussis isolates throughout the United States.


Subject(s)
Bacterial Outer Membrane Proteins/analysis , Bacterial Outer Membrane Proteins/genetics , Bordetella pertussis/genetics , Bordetella pertussis/isolation & purification , Mutation , Virulence Factors, Bordetella/analysis , Virulence Factors, Bordetella/genetics , Whooping Cough/epidemiology , Whooping Cough/microbiology , Blotting, Western , Bordetella pertussis/chemistry , Bordetella pertussis/classification , Cluster Analysis , DNA, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field , Genotype , Humans , Molecular Epidemiology , Molecular Typing , Polymerase Chain Reaction , Prevalence , Sequence Analysis, DNA , United States/epidemiology
2.
Vaccine ; 27(6): 803-14, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19071179

ABSTRACT

An international meeting on Bordetella pertussis assay standardization and harmonization was held at the Centers for Disease Control and Prevention (CDC), Atlanta, GA, 19-20 July 2007. The goal of the meeting was to harmonize the immunoassays used for pertussis diagnostics and vaccine evaluation, as agreed upon by academic and government researchers, regulatory authorities, vaccine manufacturers, and the World Health Organization (WHO). The primary objectives were (1) to provide epidemiologic, laboratory, and statistical background for support of global harmonization; (2) to overview the current status of global epidemiology, pathogenesis and immunology of pertussis; (3) to develop a consensus opinion on existing gaps in understanding standardization of pertussis assays used for serodiagnosis and vaccine evaluation; and (4) to search for a multicenter process for addressing these priority gaps. Presentations and discussions by content experts addressed these objectives. A prioritized list of action items to improve standardization and harmonization of pertussis assays was identified during a group discussion at the end of the meeting. The major items included: (1) to identify a group that will organize, prepare, maintain, and distribute proficiency panels and key reagents such as reference and control sera; (2) to encourage the development and identification of one or more reference laboratories that can serve as an anchor and resource for other laboratories; (3) to define a performance-based assay method that can serve as a reference point for evaluating laboratory differences; (4) to develop guidance on quality of other reagents, e.g., pertussis toxin and other antigens, and methods to demonstrate their suitability; (5) to establish an international working group to harmonize the criteria to evaluate the results obtained on reference and proficiency panel sera; (6) to create an inventory to determine the amount of appropriate and well-characterized sera that are available globally to be used as bridging reagents for vaccine licensure; and (7) to seek specific guidance from regulatory authorities regarding the expectations and requirements for the licensure of new multicomponent pertussis vaccines.


Subject(s)
Bordetella pertussis/immunology , Clinical Laboratory Techniques/standards , Whooping Cough/diagnosis , Whooping Cough/prevention & control , Centers for Disease Control and Prevention, U.S. , Humans , United States , Whooping Cough/epidemiology , Whooping Cough/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...