Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 199: 158-169, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35525372

ABSTRACT

Oxysterols, oxidized derivatives of cholesterol, have been implicated in multiple pathologies, including cancer. In breast cancer, the link is especially strong due to interactions between oxysterols and estrogen receptor activity. Here, we provide the first dedicated study of 113 oxysterol-related genes in breast cancer patients of the luminal subtype, in terms of both their somatic and germline variability, using targeted high-throughput DNA sequencing of 100 normal-tumor pairs with very high coverage. In the full cohort, or subsets of patients stratified by therapy, we found 12 germline variants in ABCA1, ABCA8, ABCC1, GPR183, LDLR, MBTPS1, NR1I2, OSBPL2, OSBPL3, and OSBPL5 to associate with poor survival of patients and variants in ABCA8, ABCG2, and HSD3B7 (three in total) associated with better survival. However, no associations remained significant after correction for multiple tests. Analysis of somatic variants revealed significantly (after FDR correction) poorer survival in patients mutated in CYP46A1 and 9 interacting (according to STRING analysis) genes, as well as in OSBPL3 and a set of 20 genes that collectively associated with the progesterone receptor status of patients. We propose further exploration of these genes in an integrative manner together with gene expression and epigenomic data.


Subject(s)
Breast Neoplasms , Oxysterols , Receptors, Steroid , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cohort Studies , Female , Germ Cells/metabolism , High-Throughput Nucleotide Sequencing , Humans , Oxysterols/metabolism , Receptors, Steroid/genetics
2.
Mol Diagn Ther ; 25(1): 99-110, 2021 01.
Article in English | MEDLINE | ID: mdl-33387348

ABSTRACT

BACKGROUND AND OBJECTIVE: Membrane solute carrier transporters play an important role in the transport of a wide spectrum of substrates including anticancer drugs and cancer-related physiological substrates. This study aimed to assess the prognostic relevance of gene expression and genetic variability of selected solute carrier transporters in breast cancer. METHODS: Gene expression was determined by quantitative real-time polymerase chain reaction. All SLC46A1 and SLCO1A2 exons and surrounding non-coding sequences in DNA extracted from the blood of patients with breast cancer (exploratory phase) were analyzed by next-generation sequencing technology. Common variants (minor allele frequency ≥ 5%) with in silico-predicted functional relevance were further analyzed in a large cohort of patients with breast cancer (n = 815) and their prognostic and predictive potential was estimated (validation phase). RESULTS: A gene expression and bioinformatics analysis suggested SLC46A1 and SLCO1A2 to play a putative role in the prognosis of patients with breast cancer. In total, 135 genetic variants (20 novel) were identified in both genes in the exploratory phase. Of these variants, 130 were non-coding, three missense, and two synonymous. One common variant in SLCO1A2 and four variants in SLC46A1 were predicted to be pathogenic by in silico programs and subsequently validated. A SLC46A1 haplotype block composed of rs2239911-rs2239910-rs8079943 was significantly associated with ERBB2/HER2 status and disease-free survival of hormonally treated patients. CONCLUSIONS: This study revealed the prognostic value of a SLC46A1 haplotype block for breast cancer that should be further studied.


Subject(s)
Breast Neoplasms/genetics , Genetic Variation , Organic Anion Transporters/genetics , Proton-Coupled Folate Transporter/genetics , Biomarkers, Tumor/genetics , Female , Gene Expression Regulation, Neoplastic , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Prognosis , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Survival Analysis
3.
Cancers (Basel) ; 10(12)2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30545124

ABSTRACT

The aim of our study was to set up a panel for targeted sequencing of chemoresistance genes and the main transcription factors driving their expression and to evaluate their predictive and prognostic value in breast cancer patients. Coding and regulatory regions of 509 genes, selected from PharmGKB and Phenopedia, were sequenced using massive parallel sequencing in blood DNA from 105 breast cancer patients in the testing phase. In total, 18,245 variants were identified of which 2565 were novel variants (without rs number in dbSNP build 150) in the testing phase. Variants with major allele frequency over 0.05 were further prioritized for validation phase based on a newly developed decision tree. Using emerging in silico tools and pharmacogenomic databases for functional predictions and associations with response to cytotoxic therapy or disease-free survival of patients, 55 putative variants were identified and used for validation in 805 patients with clinical follow up using KASPTM technology. In conclusion, associations of rs2227291, rs2293194, and rs4376673 (located in ATP7A, KCNAB1, and DFFB genes, respectively) with response to neoadjuvant cytotoxic therapy and rs1801160 in DPYD with disease-free survival of patients treated with cytotoxic drugs were validated and should be further functionally characterized.

SELECTION OF CITATIONS
SEARCH DETAIL
...