Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36430856

ABSTRACT

Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune and degenerative disease with axonal damage and demyelination as its main features. Its dual neurological and autoimmune nature makes it a disease that is difficult to treat. Treatments that simultaneously stop the immune response while protecting and repairing the nervous system are urgent. That is of utmost importance for the primary progressive multiple sclerosis (PPMS), a rare and severe variant of MS, characterized by worsening neurological function from the onset of symptoms. In this sense, inhibitors of glycogen synthase kinase 3ß (GSK3ß) and phosphodiesterase 7 (PDE7) have recently shown great therapeutic potential for the treatment of demyelinating diseases. Here we investigated a dual inhibitor of these two targets, the small molecule VP3.15, in a preclinical model, which resembles primary-progressive MS (PPMS), the Theiler's mouse encephalomyelitis virus-induced demyelinated disease (TMEV-IDD). In our study, VP3.15 ameliorates the disease course improving motor deficits of infected mice. Chronic treatment with VP3.15 also showed significant efficacy in the immunomodulation process, as well as in the proliferation and differentiation of oligodendroglial precursors, improving the preservation of myelin and axonal integrity. Therefore, our results support a treatment with the safe VP3.15 as an integrative therapeutic strategy for the treatment of PPMS.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Theilovirus , Animals , Mice , Cyclic Nucleotide Phosphodiesterases, Type 7 , Multiple Sclerosis/drug therapy , Glycogen Synthase Kinase 3 beta , Multiple Sclerosis, Chronic Progressive/drug therapy , Disease Models, Animal
2.
Pharmaceutics ; 14(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35890315

ABSTRACT

Lysine specific demethylase 1 (LSD1; also known as KDM1A), is an epigenetic modulator that modifies the histone methylation status. KDM1A forms a part of protein complexes that regulate the expression of genes involved in the onset and progression of diseases such as cancer, central nervous system (CNS) disorders, viral infections, and others. Vafidemstat (ORY-2001) is a clinical stage inhibitor of KDM1A in development for the treatment of neurodegenerative and psychiatric diseases. However, the role of ORY-2001 targeting KDM1A in neuroinflammation remains to be explored. Here, we investigated the effect of ORY-2001 on immune-mediated and virus-induced encephalomyelitis, two experimental models of multiple sclerosis and neuronal damage. Oral administration of ORY-2001 ameliorated clinical signs, reduced lymphocyte egress and infiltration of immune cells into the spinal cord, and prevented demyelination. Interestingly, ORY-2001 was more effective and/or faster acting than a sphingosine 1-phosphate receptor antagonist in the effector phase of the disease and reduced the inflammatory gene expression signature characteristic ofEAE in the CNS of mice more potently. In addition, ORY-2001 induced gene expression changes concordant with a potential neuroprotective function in the brain and spinal cord and reduced neuronal glutamate excitotoxicity-derived damage in explants. These results pointed to ORY-2001 as a promising CNS epigenetic drug able to target neuroinflammatory and neurodegenerative diseases and provided preclinical support for the subsequent design of early-stage clinical trials.

3.
Aging Cell ; 20(9): e13440, 2021 09.
Article in English | MEDLINE | ID: mdl-34355492

ABSTRACT

Although aggravated multiple sclerosis (MS) disability has been reported in aged patients, the aging impact on immune cells remodeling within the CNS is not well understood. Here, we investigated the influence of aging on immune cells and the neuroinflammatory and neurodegenerative processes that occur in a well-established viral model of progressive MS. We found an anomalous presence of CD4+ T, CD8+ T, B cells, and cells of myeloid lineage in the CNS of old sham mice whereas a blunted cellular innate and adaptive immune response was observed in Theiler's murine encephalomyelitis virus (TMEV) infected old mice. Microglia and macrophages show opposite CNS viral responses regarding cell counts in the old mice. Furthermore, enhanced expression of Programmed Death-ligand 1 (PD-L1) was found in microglia isolated from old TMEV-infected mice and not in isolated CNS macrophages. Immunocytochemical staining of microglial cells confirms the above differences between young and old mice. Age-related axonal loss integrity in the mouse spinal cord was found in TMEV mice, but a less marked neurodegenerative process was present in old sham mice compared with young sham mice. TMEV and sham old mice also display alterations in innate and adaptive immunity in the spleen compared to the young mice. Our study supports the need of new or adapted pharmacological strategies for MS elderly patients.


Subject(s)
Axons/immunology , Cellular Senescence/immunology , Disease Models, Animal , Multiple Sclerosis/immunology , Neuroinflammatory Diseases/immunology , Animals , Female , Mice , Multiple Sclerosis/pathology , Neuroinflammatory Diseases/pathology , Theilovirus/immunology
4.
Neurotherapeutics ; 18(2): 920-937, 2021 04.
Article in English | MEDLINE | ID: mdl-33829410

ABSTRACT

Gut microbiome studies in multiple sclerosis (MS) patients are unravelling some consistent but modest patterns of gut dysbiosis. Among these, a significant decrease of Clostridia cluster IV and XIVa has been reported. In the present study, we investigated the therapeutic effect of a previously selected mixture of human gut-derived 17 Clostridia strains, which belong to Clostridia clusters IV, XIVa, and XVIII, on the clinical outcome of experimental autoimmune encephalomyelitis (EAE). The observed clinical improvement was related to lower demyelination and astrocyte reactivity as well as a tendency to lower microglia reactivity/infiltrating macrophages and axonal damage in the central nervous system (CNS), and to an enhanced immunoregulatory response of regulatory T cells in the periphery. Transcriptome studies also highlighted increased antiinflammatory responses related to interferon beta in the periphery and lower immune responses in the CNS. Since Clostridia-treated mice were found to present higher levels of the immunomodulatory short-chain fatty acid (SCFA) butyrate in the serum, we studied if this clinical effect could be reproduced by butyrate administration alone. Further EAE experiments proved its preventive but slight therapeutic impact on CNS autoimmunity. Thus, this smaller therapeutic effect highlighted that the Clostridia-induced clinical effect was not exclusively related to the SCFA and could not be reproduced by butyrate administration alone. Although it is still unknown if these Clostridia strains will have the same effect on MS patients, gut dysbiosis in MS patients could be partially rebalanced by these commensal bacteria and their immunoregulatory properties could have a beneficial effect on MS clinical course.


Subject(s)
Butyrates/administration & dosage , Clostridiaceae/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Gastrointestinal Microbiome/physiology , Animals , Dysbiosis/immunology , Dysbiosis/pathology , Dysbiosis/therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Fatty Acids, Volatile/administration & dosage , Female , Humans , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
5.
Gut Microbes ; 12(1): 1813532, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32900255

ABSTRACT

A growing number of studies support that the bidirectional interactions between the gut microbiota, the immune system and the CNS are relevant for the pathophysiology of MS. Several studies have reported alterations in the gut microbiome of MS patients. In addition, a variety of studies in animal models of MS have suggested that specific members of the gut commensal microbiota can exacerbate or ameliorate neuroinflammation. Probiotics represent oral nontoxic immunomodulatory agents that would exert benefits when using in combination with current MS therapy. Here we investigate the effect of Vivomixx on the gut microbiome and central and peripheral immune responses in a murine model of primary progressive MS. Vivomixx administration was associated with increased abundance of many taxa such as Bacteroidetes, Actinobacteria, Tenericutes and TM7. This was accompanied by a clear improvement of the motor disability of Theiler's virus infected mice; in the CNS Vivomixx reduced microgliosis, astrogliosis and leukocyte infiltration. Notably, the presence of Breg cells (CD19+CD5+CD1dhigh) in the CNS was enhanced by Vivomixx, and while spinal cord gene expression of IL-1ß and IL-6 was diminished, the probiotic promoted IL-10 gene expression. One of the most significant findings was the increased plasma levels of butyrate and acetate levels in TMEV-mice that received Vivomixx. Peripheral immunological changes were subtle but interestingly, the probiotic restricted IL-17 production by Th17-polarized CD4+ T-cells purified from the mesenteric lymph nodes of Theiler's virus infected mice. Our data reinforce the beneficial effects of oral probiotics that would be coadjuvant treatments to current MS therapies.


Subject(s)
Gastrointestinal Microbiome , Multiple Sclerosis/drug therapy , Multiple Sclerosis/microbiology , Nervous System/drug effects , Probiotics/administration & dosage , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/physiopathology , Nervous System/immunology , Neuroimmunomodulation/drug effects
6.
Neurobiol Dis ; 143: 104994, 2020 09.
Article in English | MEDLINE | ID: mdl-32599064

ABSTRACT

Multiple Sclerosis (MS) is characterized by a combination of inflammatory and neurodegenerative processes in the spinal cord and the brain. Natural and synthetic cannabinoids such as VCE-004.8 have been studied in preclinical models of MS and represent promising candidates for drug development. VCE-004.8 is a multitarget synthetic cannabidiol (CBD) derivative acting as a dual Peroxisome proliferator-activated receptor-gamma/Cannabinoid receptor type 2 (PPARγ/CB2) ligand agonist that also activates the Hypoxia-inducible factor (HIF) pathway. EHP-101 is an oral lipidic formulation of VCE-004.8 that has shown efficacy in several preclinical models of autoimmune, inflammatory, fibrotic, and neurodegenerative diseases. EHP-101 alleviated clinical symptomatology in EAE and transcriptomic analysis demonstrated that EHP-101 prevented the expression of many inflammatory genes closely associated with MS pathophysiology in the spinal cord. EHP-101 normalized the expression of several genes associated with oligodendrocyte function such as Teneurin 4 (Tenm4) and Gap junction gamma-3 (Gjc3) that were downregulated in EAE. EHP-101 treatment prevented microglia activation and demyelination in both the spinal cord and the brain. Moreover, EAE was associated with a loss in the expression of Oligodendrocyte transcription factor 2 (Olig2) in the corpus callosum, a marker for oligodendrocyte differentiation, which was restored by EHP-101 treatment. In addition, EHP-101 enhanced the expression of glutathione S-transferase pi (GSTpi), a marker for mature oligodendrocytes in the brain. We also found that a diet containing 0.2% cuprizone for six weeks induced a clear loss of myelin in the brain measured by Cryomyelin staining and Myelin basic protein (MBP) expression. Moreover, EHP-101 also prevented cuprizone-induced microglial activation, astrogliosis and reduced axonal damage. Our results provide evidence that EHP-101 showed potent anti-inflammatory activity, prevented demyelination, and enhanced remyelination. Therefore, EHP-101 represents a promising drug candidate for the potential treatment of different forms of MS.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Multiple Sclerosis/pathology , Remyelination/drug effects , Spinal Cord/drug effects , Animals , Cannabinoids/pharmacology , Chelating Agents/toxicity , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation/pathology , Mice , Mice, Inbred C57BL , Spinal Cord/pathology
7.
Cells ; 9(4)2020 04 07.
Article in English | MEDLINE | ID: mdl-32272791

ABSTRACT

Previous studies in experimental autoimmune encephalomyelitis (EAE) models have shown that some probiotic bacteria beneficially impact the development of this experimental disease. Here, we tested the therapeutic effect of two commercial multispecies probiotics-Lactibiane iki and Vivomixx-on the clinical outcome of established EAE. Lactibiane iki improves EAE clinical outcome in a dose-dependent manner and decreases central nervous system (CNS) demyelination and inflammation. This clinical improvement is related to the inhibition of pro-inflammatory and the stimulation of immunoregulatory mechanisms in the periphery. Moreover, both probiotics modulate the number and phenotype of dendritic cells (DCs). Specifically, Lactibiane iki promotes an immature, tolerogenic phenotype of DCs that can directly induce immune tolerance in the periphery, while Vivomixx decreases the percentage of DCs expressing co-stimulatory molecules. Finally, gut microbiome analysis reveals an altered microbiome composition related to clinical condition and disease progression. This is the first preclinical assay that demonstrates that a commercial probiotic performs a beneficial and dose-dependent effect in EAE mice and one of the few that demonstrates a therapeutic effect once the experimental disease is established. Because this probiotic is already available for clinical trials, further studies are being planned to explore its therapeutic potential in multiple sclerosis patients.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Gastrointestinal Microbiome/immunology , Immune Tolerance/immunology , Multiple Sclerosis/drug therapy , Probiotics/therapeutic use , Animals , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Humans , Mice , Multiple Sclerosis/immunology , Probiotics/pharmacology
8.
J Neuroinflammation ; 17(1): 88, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32192522

ABSTRACT

BACKGROUND: The participation of microglia in CNS development and homeostasis indicate that these cells are pivotal for the regeneration that occurs after demyelination. The clearance of myelin debris and the inflammatory-dependent activation of local oligodendrocyte progenitor cells in a demyelinated lesion is dependent on the activation of M2c microglia, which display both phagocytic and healing functions. Emerging interest has been raised about the role of Wnt/ß-catenin signaling in oligodendrogenesis and myelination. Besides, cytokines and growth factors released by microglia can control the survival, proliferation, migration, and differentiation of neural stem cells (NSCs), contributing to remyelination through the oligodendrocyte specification of this adult neurogenic niche. METHODS: TMEV-IDD model was used to study the contribution of dorsal SVZ stem cells to newly born oligodendrocytes in the corpus callosum following demyelination by (i) en-face dorsal SVZ preparations; (ii) immunohistochemistry; and (iii) cellular tracking. By RT-PCR, we analyzed the expression of Wnt proteins in demyelinated and remyelinating corpus callosum. Using in vitro approaches with microglia cultures and embryonic NSCs, we studied the role of purified myelin, Wnt proteins, and polarized microglia-conditioned medium to NSC proliferation and differentiation. One-way ANOVA followed by Bonferroni's post-hoc test, or a Student's t test were used to establish statistical significance. RESULTS: The demyelination caused by TMEV infection is paralleled by an increase in B1 cells and pinwheels in the dorsal SVZ, resulting in the mobilization of SVZ proliferative progenitors and their differentiation into mature oligodendrocytes. Demyelination decreased the gene expression of Wnt5a and Wnt7a, which was restored during remyelination. In vitro approaches show that Wnt3a enhances NSC proliferation, while Wnt7a and myelin debris promotes oligodendrogenesis from NSCs. As phagocytic M2c microglia secrete Wnt 7a, their conditioned media was found to induce Wnt/ß-Catenin signaling in NSCs promoting an oligodendroglial fate. CONCLUSIONS: We define here the contribution of microglia to Wnt production depending on their activation state, with M1 microglia secreting the Wnt5a protein and M2c microglia secreting Wnt7a. Collectively, our data reveal the role of reparative microglia in NSC oligodendrogenesis with the involvement of Wnt7a.


Subject(s)
Cell Differentiation/physiology , Microglia/metabolism , Neurogenesis/physiology , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Wnt Proteins/metabolism , Animals , Female , Lateral Ventricles/cytology , Mice , Oligodendrocyte Precursor Cells/cytology , Oligodendroglia/cytology , Rats
9.
Front Cell Neurosci ; 14: 34, 2020.
Article in English | MEDLINE | ID: mdl-32140100

ABSTRACT

The consistency, efficacy, and safety of cannabis-based medicines have been demonstrated in humans, leading to the approval of the first cannabis-based therapy to alleviate spasticity and pain associated with multiple sclerosis (MS). Indeed, the evidence supporting the therapeutic potential of cannabinoids for the management of pathological events related to this disease is ever increasing. Different mechanisms of action have been proposed for cannabis-based treatments in mouse models of demyelination, such as Experimental Autoimmune Encephalomyelitis (EAE) and Theiler's Murine Encephalomyelitis Virus-Induced Demyelinating Disease (TMEV-IDD). Cells in the immune and nervous system express the machinery to synthesize and degrade endocannabinoids, as well as their CB1 and CB2 receptors, each mediating different intracellular pathways upon activation. Hence, the effects of cannabinoids on cells of the immune system, on the blood-brain barrier (BBB), microglia, astrocytes, oligodendrocytes and neurons, potentially open the way for a plethora of therapeutic actions on different targets that could aid the management of MS. As such, cannabinoids could have an important impact on the outcome of MS in terms of the resolution of inflammation or the potentiation of endogenous repair in the central nervous system (CNS), as witnessed in the EAE, TMEV-IDD and toxic demyelination models, and through other in vitro approaches. In this mini review article, we summarize what is currently known about the peripheral and central effects of cannabinoids in relation to the neuroinflammation coupled to MS. We pay special attention to their effects on remyelination and axon preservation within the CNS, considering the major questions raised in the field and future research directions.

10.
Glia ; 68(6): 1255-1273, 2020 06.
Article in English | MEDLINE | ID: mdl-31894889

ABSTRACT

The failure to remyelinate and regenerate is a critical impediment to recovery in multiple sclerosis (MS), resulting in severe dysfunction and disability. The chondroitin sulfate proteoglycans (CSPGs) that accumulate in MS lesions are thought to be linked to the failure to regenerate, impeding oligodendrocyte precursor cell (OPC) differentiation and neuronal growth. The potential of endocannabinoids to influence MS progression may reflect their capacity to enhance repair processes. Here, we investigated how 2-arachidonoylglycerol (2-AG) may affect the production of the CSPGs neurocan and brevican by astrocytes in culture. In addition, we studied whether 2-AG promotes oligodendrocyte differentiation under inhibitory conditions in vitro. Following treatment with 2-AG or by enhancing its endogenous tone through the use of inhibitors of its hydrolytic enzymes, CSPG production by rat and human TGF-ß1 stimulated astrocytes was reduced. These effects of 2-AG might reflect its influence on TGF-ß1/SMAD pathway, signaling that is involved in CSPG upregulation. The matrix generated from 2-AG-treated astrocytes is less inhibitory to oligodendrocyte differentiation and significantly, 2-AG administration directly promotes the differentiation of rat and human oligodendrocytes cultured under inhibitory conditions. Overall, the data obtained favor targeting the endocannabinoid system to neutralize CSPG accumulation and to enhance oligodendrocyte differentiation.


Subject(s)
Arachidonic Acids/pharmacology , Astrocytes/drug effects , Chondroitin Sulfate Proteoglycans/metabolism , Endocannabinoids/metabolism , Glycerides/pharmacology , Oligodendroglia/drug effects , Animals , Astrocytes/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Endocannabinoids/pharmacology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Rats , Remyelination/physiology
11.
Front Immunol ; 10: 1374, 2019.
Article in English | MEDLINE | ID: mdl-31258540

ABSTRACT

Gut microbiota dysbiosis has been implicated in MS and other immune diseases, although it remains unclear how manipulating the gut microbiota may affect the disease course. Using a well-established model of progressive MS triggered by intracranial infection with Theiler's murine encephalomyelitis virus (TMEV), we sought to determine whether dysbiosis induced by oral antibiotics (ABX) administered on pre-symptomatic and symptomatic phases of the disease influences its course. We also addressed the effects of microbiota recolonization after ABX withdrawn in the presence or absence of probiotics. Central and peripheral immunity, plasma acetate and butyrate levels, axon damage and motor disability were evaluated. The cocktail of ABX prevented motor dysfunction and limited axon damage in mice, which had fewer CD4+ and CD8+ T cells in the CNS, while gut microbiota recolonization worsened motor function and axonal integrity. The underlying mechanisms of ABX protective effects seem to involve CD4+CD39+ T cells and CD5+CD1d+ B cells into the CNS. In addition, microglia adopted a round amoeboid morphology associated to an anti-inflammatory gene profile in the spinal cord of TMEV mice administered ABX. The immune changes in the spleen and mesenteric lymph nodes were modest, yet ABX treatment of mice limited IL-17 production ex vivo. Collectively, our results provide evidence of the functional relevance of gut microbiota manipulation on the neurodegenerative state and disease severity in a model of progressive MS and reinforce the role of gut microbiota as target for MS treatment.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Axons/pathology , B-Lymphocytes/immunology , Cardiovirus Infections/immunology , Gastrointestinal Microbiome/immunology , Motor Disorders/immunology , Multiple Sclerosis/immunology , Probiotics/therapeutic use , T-Lymphocytes/immunology , Theilovirus/physiology , Animals , Cells, Cultured , Disease Models, Animal , Disease Progression , Humans , Immunity , Lymphocyte Activation , Mice , Motor Disorders/drug therapy , Multiple Sclerosis/drug therapy
12.
J Neuroinflammation ; 15(1): 64, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29495967

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is characterized by a combination of inflammatory and neurodegenerative processes variously dominant in different stages of the disease. Thus, immunosuppression is the goal standard for the inflammatory stage, and novel remyelination therapies are pursued to restore lost function. Cannabinoids such as 9Δ-THC and CBD are multi-target compounds already introduced in the clinical practice for multiple sclerosis (MS). Semisynthetic cannabinoids are designed to improve bioactivities and druggability of their natural precursors. VCE-004.8, an aminoquinone derivative of cannabidiol (CBD), is a dual PPARγ and CB2 agonist with potent anti-inflammatory activity. Activation of the hypoxia-inducible factor (HIF) can have a beneficial role in MS by modulating the immune response and favoring neuroprotection and axonal regeneration. METHODS: We investigated the effects of VCE-004.8 on the HIF pathway in different cell types. The effect of VCE-004.8 on macrophage polarization and arginase 1 expression was analyzed in RAW264.7 and BV2 cells. COX-2 expression and PGE2 synthesis induced by lipopolysaccharide (LPS) was studied in primary microglia cultures. The efficacy of VCE-004.8 in vivo was evaluated in two murine models of MS such as experimental autoimmune encephalomyelitis (EAE) and Theiler's virus-induced encephalopathy (TMEV). RESULTS: Herein, we provide evidence that VCE-004.8 stabilizes HIF-1α and HIF-2α and activates the HIF pathway in human microvascular endothelial cells, oligodendrocytes, and microglia cells. The stabilization of HIF-1α is produced by the inhibition of the prolyl-4-hydrolase activity of PHD1 and PDH2. VCE-004.8 upregulates the expression of HIF-dependent genes such as erythropoietin and VEGFA, induces angiogenesis, and enhances migration of oligodendrocytes. Moreover, VCE-004.8 blunts IL-17-induced M1 polarization, inhibits LPS-induced COX-2 expression and PGE2 synthesis, and induces expression of arginase 1 in macrophages and microglia. In vivo experiments showed efficacy of VCE-004.8 in EAE and TMEV. Histopathological analysis revealed that VCE-004.8 treatments prevented demyelination, axonal damage, and immune cells infiltration. In addition, VCE-004.8 downregulated the expression of several genes closely associated with MS physiopathology, including those underlying the production of chemokines, cytokines, and adhesion molecules. CONCLUSIONS: This study provides new significant insights about the potential role of VCE-004.8 for MS treatment by ameliorating neuroinflammation and demyelination.


Subject(s)
Cell Hypoxia/physiology , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Quinones/metabolism , Animals , Arginase/genetics , Arginase/metabolism , Cell Line, Transformed , Cell Movement/genetics , Cell Polarity/drug effects , Cell Polarity/genetics , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neovascularization, Pathologic , Receptor, Cannabinoid, CB2/antagonists & inhibitors
13.
Glia ; 66(7): 1447-1463, 2018 07.
Article in English | MEDLINE | ID: mdl-29484707

ABSTRACT

The innate immune response is mediated by primary immune modulators such as cytokines and chemokines that together with immune cells and resident glia orchestrate CNS immunity and inflammation. Growing evidence supports that the endocannabinoid 2-arachidonoylglycerol (2-AG) exerts protective actions in CNS injury models. Here, we used the acute phase of Theiler's virus induced demyelination disease (TMEV-IDD) as a model of acute neuroinflammation to investigate whether 2-AG modifies the brain innate immune responses to TMEV and CNS leukocyte trafficking. 2-AG or the inhibition of its hydrolysis diminished the reactivity and number of microglia at the TMEV injection site reducing their morphological complexity and modulating them towards an anti-inflammatory state via CB2 receptors. Indeed, 2-AG dampened the infiltration of immune cells into the CNS and inhibited their egress from the spleen, resulting in long-term beneficial effects at the chronic phase of the disease. Intriguingly, it is not a generalized action over leukocytes since 2-AG increased the presence and suppressive potency of myeloid derived suppressor cells (MDSCs) in the brain resulting in higher apoptotic CD4+ T cells at the injection site. Together, these data suggest a robust modulatory effect in the peripheral and central immunity by 2-AG and highlight the interest of modulating endogenous cannabinoids to regulate CNS inflammatory conditions.


Subject(s)
Arachidonic Acids/metabolism , Cardiovirus Infections/immunology , Endocannabinoids/metabolism , Glycerides/metabolism , Inflammation/immunology , Microglia/immunology , Theilovirus , Animals , Arachidonic Acids/administration & dosage , Brain/immunology , Brain/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Cardiovirus Infections/pathology , Disease Models, Animal , Endocannabinoids/administration & dosage , Female , Glycerides/administration & dosage , Immunity, Innate/immunology , Inflammation/pathology , Mice , Microglia/pathology , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism
14.
J Neurosci ; 37(35): 8385-8398, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28751457

ABSTRACT

The failure to undergo remyelination is a critical impediment to recovery in multiple sclerosis. Chondroitin sulfate proteoglycans (CSPGs) accumulate at demyelinating lesions creating a nonpermissive environment that impairs axon regeneration and remyelination. Here, we reveal a new role for 2-arachidonoylglycerol (2-AG), the major CNS endocannabinoid, in the modulation of CSPGs deposition in a progressive model of multiple sclerosis, the Theiler's murine encephalomyelitis virus-induced demyelinating disease. Treatment with a potent reversible inhibitor of the enzyme monoacylglycerol lipase, which accounts for 85% of the 2-AG degradation in the mouse CNS, modulates neuroinflammation and reduces CSPGs accumulation and astrogliosis around demyelinated lesions in the spinal cord of Theiler's murine encephalomyelitis virus-infected mice. Inhibition of 2-AG hydrolysis augments the number of mature oligodendrocytes and increases MBP, leading to remyelination and functional recovery of mice. Our findings establish a mechanism for 2-AG promotion of remyelination with implications in axonal repair in CNS demyelinating pathologies.SIGNIFICANCE STATEMENT The deposition of chondroitin sulfate proteoglycans contributes to the failure in remyelination associated with multiple sclerosis. Here we unveil a new role for 2-arachidonoylglycerol, the major CNS endocannabinoid, in the modulation of chondroitin sulfate proteoglycan accumulation in Theiler's murine encephalomyelitis virus-induced demyelinating disease. The treatment during the chronic phase with a potent reversible inhibitor of the enzyme monoacylglycerol lipase, which accounts for 85% of the 2-arachidonoylglycerol degradation in the mouse CNS, modulates neuroinflammation and reduces chondroitin sulfate proteoglycan deposition around demyelinated lesions in the spinal cord of Theiler's murine encephalomyelitis virus-infected mice. The increased 2-arachidonoylglycerol tone promotes remyelination in a model of progressive multiple sclerosis ameliorating motor dysfunction.


Subject(s)
Arachidonic Acids/pharmacology , Arachidonic Acids/therapeutic use , Endocannabinoids/pharmacology , Endocannabinoids/therapeutic use , Glycerides/pharmacology , Glycerides/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/physiopathology , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Myelinated/pathology , Proteoglycans/metabolism , Animals , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/therapeutic use , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Female , Mice , Multiple Sclerosis/pathology , Neurogenesis/drug effects
15.
J Immunol Res ; 2014: 156380, 2014.
Article in English | MEDLINE | ID: mdl-24868560

ABSTRACT

BACKGROUND AND OBJECTIVES: Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE), an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. METHODS: For EAE induction, female C57BL/6 (susceptible strain) and CD1 (resistant outbred strain showing heterogeneous MHC antigens) mice were immunized with the 35-55 peptide of myelin oligodendrocyte glycoprotein (MOG35-55). We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. RESULTS: Upon immunization with MOG35-55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35-55. Accordingly, resistant mice experienced a rise in regulatory B cells (P=0.001) and, to a lower extent, in regulatory T cells (P=0.02) compared with C57BL/6 susceptible mice. As a consequence, MOG35-55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P=0.02) and IL-17 (P=0.009) and higher serum levels of IL-17 (P=0.04) than resistant mice. CONCLUSIONS: Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism.


Subject(s)
B-Lymphocytes, Regulatory/pathology , Disease Susceptibility/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , T-Lymphocyte Subsets/pathology , T-Lymphocytes, Regulatory/pathology , Animals , Animals, Outbred Strains , Antibodies, Neutralizing/biosynthesis , B-Lymphocytes, Regulatory/drug effects , B-Lymphocytes, Regulatory/immunology , Cell Proliferation/drug effects , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Immunization , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-17/biosynthesis , Interleukin-17/immunology , Major Histocompatibility Complex , Mice , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/immunology , Myelin-Oligodendrocyte Glycoprotein/pharmacology , Peptide Fragments/immunology , Peptide Fragments/pharmacology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
16.
Curr Pharm Des ; 20(29): 4707-22, 2014.
Article in English | MEDLINE | ID: mdl-24588829

ABSTRACT

The central nervous system (CNS) innate immune response includes an arsenal of molecules and receptors expressed by professional phagocytes, glial cells and neurons that is involved in host defence and clearance of toxic and dangerous cell debris. However, any uncontrolled innate immune responses within the CNS are widely recognized as playing a major role in the development of autoimmune disorders and neurodegeneration, with multiple sclerosis (MS) Alzheimer's disease (AD) being primary examples. Hence, it is important to identify the key regulatory mechanisms involved in the control of CNS innate immunity and which could be harnessed to explore novel therapeutic avenues. Neuroimmune regulatory proteins (NIReg) such as CD95L, CD200, CD47, sialic acid, complement regulatory proteins (CD55, CD46, fH, C3a), HMGB1, may control the adverse immune responses in health and diseases. In the absence of these regulators, when neurons die by apoptosis, become infected or damaged, microglia and infiltrating immune cells are free to cause injury as well as an adverse inflammatory response in acute and chronic settings. We will herein provide new emphasis on the role of the pair CD200-CD200R in MS and its experimental models: experimental autoimmune encephalomyelitis (EAE) and Theiler's virus induced demyelinating disease (TMEV-IDD). The interest of the cannabinoid system as inhibitor of inflammation prompt us to introduce our findings about the role of endocannabinoids (eCBs) in promoting CD200-CD200 receptor (CD200R) interaction and the benefits caused in TMEV-IDD. Finally, we also review the current data on CD200-CD200R interaction in AD, as well as, in the aging brain.


Subject(s)
Antigens, CD/metabolism , Antigens, Surface/metabolism , Brain/immunology , Encephalitis/immunology , Endocannabinoids/physiology , Immunity, Innate , Receptors, Cell Surface/metabolism , Aging/immunology , Alzheimer Disease/immunology , Encephalitis/therapy , Humans , Multiple Sclerosis/immunology , Orexin Receptors
17.
Prog Neurobiol ; 101-102: 46-64, 2013.
Article in English | MEDLINE | ID: mdl-23201558

ABSTRACT

Multiple sclerosis (MS) is a complex inflammatory disease of unknown etiology that affects the central nervous system (CNS) white matter, and for which no effective cure exists. Indeed, whether the primary event in MS pathology affects myelin or axons of the CNS remains unclear. Animal models are necessary to identify the immunopathological mechanisms involved in MS and to develop novel therapeutic and reparative approaches. Specifically, viral models of chronic demyelination and axonal damage have been used to study the contribution of viruses in human MS, and they have led to important breakthroughs in our understanding of MS pathology. The Theiler's murine encephalomyelitis virus (TMEV) model is one of the most commonly used MS models, although other viral models are also used, including neurotropic strains of mouse hepatitis virus (MHV) that induce chronic inflammatory demyelination with similar histological features to those observed in MS. This review will discuss the immunopathological mechanisms involved in TMEV-induced demyelinating disease (TMEV-IDD). The TMEV model reproduces a chronic progressive disease due to the persistence of the virus for the entire lifespan in susceptible mice. The evolution and significance of the axonal damage and neuroinflammation, the importance of epitope spread from viral to myelin epitopes, the presence of abortive remyelination and the existence of a brain pathology in addition to the classical spinal cord demyelination, are some of the findings that will be discussed in the context of this TMEV-IDD model. Despite their limitations, viral models remain an important tool to study the etiology of MS, and to understand the clinical and pathological variability associated with this disease.


Subject(s)
Demyelinating Diseases/etiology , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Nerve Degeneration/etiology , Theilovirus/pathogenicity , Animals , Demyelinating Diseases/virology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/virology , Humans , Mice , Multiple Sclerosis/complications , Multiple Sclerosis/pathology , Multiple Sclerosis/virology , Nerve Degeneration/virology
18.
J Neuroimmune Pharmacol ; 7(4): 1002-16, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22971837

ABSTRACT

Phytocannabinoids like ∆(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) show a beneficial effect on neuroinflammatory and neurodegenerative processes through cell membrane cannabinoid receptor (CBr)-dependent and -independent mechanisms. Natural and synthetic cannabinoids also target the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ), an attractive molecular target for the treatment of neuroinflammation. As part of a study on the SAR of phytocannabinoids, we have investigated the effect of the oxidation modification in the resorcinol moiety of cannabigerol (CBG) on CB(1), CB(2) and PPARγ binding affinities, identifying cannabigerol quinone (VCE-003) as a potent anti-inflammatory agent. VCE-003 protected neuronal cells from excitotoxicity, activated PPARγ transcriptional activity and inhibited the release of pro-inflammatory mediators in LPS-stimulated microglial cells. Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis (MS) was used to investigate the anti-inflammatory activity of this compound in vivo. Motor function performance was evaluated and the neuroinflammatory response and gene expression pattern in brain and spinal cord were studied by immunostaining and qRT-PCR. We found that VCE-003 ameliorated the symptoms associated to TMEV infection, decreased microglia reactivity and modulated the expression of genes involved in MS pathophysiology. These data lead us to consider VCE-003 to have high potential for drug development against MS and perhaps other neuroinflammatory diseases.


Subject(s)
Cannabinoids/therapeutic use , Multiple Sclerosis/drug therapy , Neuroprotective Agents/therapeutic use , Quinones/therapeutic use , Animals , Cardiovirus Infections/drug therapy , Cardiovirus Infections/pathology , Cells, Cultured , Chronic Disease , Cytokines/metabolism , Dinoprostone/metabolism , Female , HEK293 Cells , Humans , Immunohistochemistry , L-Lactate Dehydrogenase/metabolism , Mice , Multiple Sclerosis/pathology , Oxidation-Reduction , PPAR gamma/metabolism , Pregnancy , Psychomotor Performance/physiology , Real-Time Polymerase Chain Reaction , Theilovirus , Vascular Cell Adhesion Molecule-1/biosynthesis
19.
Angew Chem Int Ed Engl ; 51(28): 6896-9, 2012 Jul 09.
Article in English | MEDLINE | ID: mdl-22689411

ABSTRACT

Receptors made visible: The described biotin-tagged small-molecule probes with excellent affinities for the CB(1) and CB(2) cannabinoid receptors (CB(1)R and CB(2)R) enable direct visualization of these receptors in native cellular systems, including neurons, microglia, and immune cells. This method could overcome some of the limitations of current methodologies and may help to dissect the complexity of the endogenous cannabinoid system.


Subject(s)
Cannabinoids/pharmacology , Dronabinol/analogs & derivatives , Molecular Probes/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Animals , Biotin/chemistry , Cells, Cultured , Dronabinol/pharmacology , Flow Cytometry , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Microglia/cytology , Microglia/drug effects , Microglia/metabolism , Molecular Dynamics Simulation , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Protein Conformation , Rats , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB2/chemistry
20.
Glia ; 60(9): 1437-50, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22653796

ABSTRACT

The endocannabinoid anandamide (AEA) is released by macrophages and microglia on pathological neuroinflammatory conditions such as multiple sclerosis (MS). CD200 is a membrane glycoprotein expressed in neurons that suppresses immune activity via its receptor (CD200R) mainly located in macrophages/microglia. CD200-CD200R interactions contribute to the brain immune privileged status. In this study, we show that AEA protects neurons from microglia-induced neurotoxicity via CD200-CD200R interaction. AEA increases the expression of CD200R1 in LPS/IFN-γ activated microglia through the activation of CB(2) receptors. The neuroprotective effect of AEA disappears when microglial cells derive from CD200R1(-/-) mice. We also show that engagement of CD200R1 by CD200Fc decreased the production of the proinflammatory cytokines IL-1ß and IL-6, but increased IL-10 in activated microglia. In the chronic phases of Theiler's virus-induced demyelinating disease (TMEV-IDD) the expression of CD200 and CD200R1 was reduced in the spinal cord. AEA-treated animals up-regulated the expression of CD200 and CD200R1, restoring levels found in sham animals together with increased expression of IL-10 and reduced expression of IL-1ß and IL-6. Treated animals also improved their motor behavior. Because AEA up-regulated the expression of CD200R1 in microglia, but failed to enhance CD200 in neurons we suggest that AEA-induced up-regulation of CD200 in TMEV-IDD is likely due to IL-10 as this cytokine increases CD200 in neurons. Our findings provide a new mechanism of action of AEA to limit immune response in the inflamed brain.


Subject(s)
Antigens, CD/metabolism , Antigens, Surface/metabolism , Arachidonic Acids/therapeutic use , Brain/metabolism , Endocannabinoids/therapeutic use , Inflammation/drug therapy , Neuroprotective Agents/therapeutic use , Polyunsaturated Alkamides/therapeutic use , Receptors, Cell Surface/metabolism , Animals , Arachidonic Acids/pharmacology , Brain/drug effects , Brain/immunology , Cells, Cultured , Endocannabinoids/pharmacology , Inflammation/immunology , Inflammation/metabolism , Interleukin-1beta/biosynthesis , Interleukin-6/biosynthesis , Mice , Microglia/drug effects , Microglia/immunology , Microglia/metabolism , Neurons/drug effects , Neurons/immunology , Neurons/metabolism , Neuroprotective Agents/pharmacology , Orexin Receptors , Polyunsaturated Alkamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...