Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(4): e0124756, 2015.
Article in English | MEDLINE | ID: mdl-25897495

ABSTRACT

Progesterone receptor and estrogen receptor participate in growth and differentiation of the different rat decidual regions. Steroid hormone receptor antagonists were used to study steroid regulation of decidualization. Here we describe a suppressive interaction between progesterone receptor (onapristone) and estrogen receptor (ICI182780) antagonists and their relation to a rescue phenomenon with concomitant regulation of Hand2, Bmp2 and p-ERK1/2 during the early decidualization steps. Phenotypes of decidua development produced by antagonist treatments were characterized by morphology, proliferation, differentiation, angiogenesis and expression of signaling molecules. We found that suppression of progesterone receptor activity by onapristone treatment resulted in resorption of the implantation sites with concomitant decrease in progesterone and estrogen receptors, PCNA, KI67 antigen, DESMIN, CCND3, CX43, Prl8a2, and signaling players such as transcription factor Hand2, Bmp2 mRNAs and p-ERK1/2. Moreover, FGF-2 and Vegfa increased as a consequence of onapristone treatment. Implantation sites from antagonist of estrogen receptor treated rats developed all decidual regions, but showed an anomalous blood vessel formation at the mesometrial part of the decidua. The deleterious effect of onapristone was partially counteracted by the impairment of estrogen receptor activity with rescue of expression levels of hormone steroid receptors, proliferation and differentiation markers, and the induction of a probably compensatory increase in signaling molecules Hand2, Bmp2 and ERK1/2 activation compared to oil treated controls. This novel drug interaction during decidualization could be applied to pathological endometrial cell proliferation processes to improve therapies using steroid hormone receptor targets.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Morphogenetic Protein 2/metabolism , Decidua/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Animals , Cell Differentiation , Decidua/blood supply , Embryo Implantation , Estradiol/analogs & derivatives , Estradiol/pharmacology , Female , Fulvestrant , Gonanes/pharmacology , Pregnancy , Protein Transport , Rats, Wistar , Receptors, Estrogen/antagonists & inhibitors , Receptors, Progesterone/antagonists & inhibitors , Signal Transduction
2.
PLoS One ; 9(5): e97311, 2014.
Article in English | MEDLINE | ID: mdl-24859236

ABSTRACT

Although non-genomic steroid receptor pathways have been studied over the past decade, little is known about the direct gene expression changes that take place as a consequence of their activation. Progesterone controls proliferation of rat endometrial stromal cells during the peri-implantation phase of pregnancy. We showed that picomolar concentration of progestin R5020 mimics this control in UIII endometrial stromal cells via ERK1-2 and AKT activation mediated by interaction of Progesterone Receptor (PR) with Estrogen Receptor beta (ERb) and without transcriptional activity of endogenous PR and ER. Here we identify early downstream targets of cytoplasmic PR signaling and their possible role in endometrial stromal cell proliferation. Microarray analysis of global gene expression changes in UIII cells treated for 45 min with progestin identified 97 up- and 341 down-regulated genes. The most over-represented molecular functions were transcription factors and regulatory factors associated with cell proliferation and cell cycle, a large fraction of which were repressors down-regulated by hormone. Further analysis verified that progestins regulate Ccnd1, JunD, Usf1, Gfi1, Cyr61, and Cdkn1b through PR-mediated activation of ligand-free ER, ERK1-2 or AKT, in the absence of genomic PR binding. ChIP experiments show that progestin promoted the interaction of USF1 with the proximal promoter of the Cdc2 gene. Usf1 knockdown abolished Cdc2 progestin-dependent transcriptional regulation and cell proliferation, which also blocked Cdc2 knockdown. We conclude that progestin-induced proliferation of endometrial stromal cells is mediated by ERK1-2 and AKT dependent early regulation of USF1, which directly induces Cdc2. To our knowledge, this is the first description of early target genes of progestin-activated classical PR via crosstalk with protein kinases and independently of hormone receptor binding to the genomic targets.


Subject(s)
CDC2 Protein Kinase/metabolism , Chromatin/metabolism , Endometrium/cytology , Gene Expression Regulation/drug effects , Progestins/pharmacology , Receptors, Progesterone/metabolism , Signal Transduction/drug effects , Animals , CREB-Binding Protein/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gene Regulatory Networks/drug effects , Humans , Promegestone/pharmacology , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Rats , Stromal Cells/cytology , Stromal Cells/drug effects , Transcription Factors/metabolism , Upstream Stimulatory Factors/metabolism
3.
J Cell Physiol ; 222(1): 127-37, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19780023

ABSTRACT

During the preimplantation phase of pregnancy the endometrial stroma differentiates into decidua, a process that implies numerous morphological changes and is an example of physiological transdifferentiation. Here we show that UIII rat endometrial stromal cells cultured in the presence of calf serum acquired morphological features of decidual cells and expressed decidual markers. To identify genes involved in decidualization we compared gene expression patterns of control and decidualized UIII cells using cDNA microarray. We found 322 annotated genes exhibiting significant differences in expression (>3-fold, fold discovery rate (FDR) >0.005), of which 312 have not been previously related to decidualization. Analysis of overrepresented functions revealed that protein synthesis, gene expression, and chromatin architecture and remodeling are the most relevant modified functions during decidualization. Relevant genes are also found in the functional terms differentiation, cell proliferation, signal transduction, and matrix/structural proteins. Several of these new genes involved in decidualization (Csdc2, Trim27, Eef1a1, Bmp1, Wt1, Aes, Gna12, and Men1) are shown to be also regulated in uterine decidua during normal pregnancy. Thus, the UIII cell culture model will allow future mechanistic studies to define the transcriptional network regulating reprogramming of stromal cells into decidual cells.


Subject(s)
Decidua/metabolism , Gene Expression Profiling , Stromal Cells/cytology , Stromal Cells/metabolism , Animals , Cell Differentiation/genetics , Decidua/cytology , Down-Regulation/genetics , Female , Gene Expression Regulation, Developmental , Oligonucleotide Array Sequence Analysis , Pregnancy , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...