Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Immunology ; 156(2): 187-198, 2019 02.
Article in English | MEDLINE | ID: mdl-30408168

ABSTRACT

Major histocompatibility complex (MHC) genes are highly polymorphic, which makes each MHC molecule different regarding their peptide repertoire, so they can bind and present to T lymphocytes. The increasing importance of immunopeptidomics and its use in personalized medicine in different fields such as oncology or autoimmunity demand the correct analysis of the peptide repertoires bound to human leukocyte antigen type 1 (HLA-I) and HLA-II molecules. Purification of the peptide pool by affinity chromatography and individual peptide sequencing using mass spectrometry techniques is the standard protocol to define the binding motifs of the different MHC-I and MHC-II molecules. The identification of MHC-I binding motifs is relatively simple, but it is more complicated for MHC-II. There are some programs that identify the anchor motifs of MHC-II molecules. However, these programs do not identify the anchor motif correctly for some HLA-II molecules and some anchor motifs have been deduced using subjective interpretation of the data. Here, we present a new software, called PRBAM (Peptide Repertoire-Based Anchor Motif) that uses a new algorithm based on the peptide-MHC interactions and, using peptide lists obtained by mass spectrometry sequencing, identifies the binding motif of MHC-I and HLA-DR molecules. PRBAM has an easy-to-use interface, and the results are presented in graphics, tables and peptide lists. Finally, the fact that PRBAM uses a new algorithm makes it complementary to other existing programs.


Subject(s)
HLA-DR Antigens/genetics , Histocompatibility Antigens Class I/genetics , Sequence Analysis, Protein , Software , Amino Acid Motifs , HLA-DR Antigens/immunology , Histocompatibility Antigens Class I/immunology , Humans
2.
Arthritis Rheumatol ; 68(10): 2412-21, 2016 10.
Article in English | MEDLINE | ID: mdl-27158783

ABSTRACT

OBJECTIVE: To evaluate similarity of the peptide repertoires bound to HLA-DR molecules that are differentially associated with rheumatoid arthritis (RA), and to define structural features of the shared peptides. METHODS: Peptide pools bound to HLA-DRB1*01:01, HLA-DRB1*04:01, and HLA-DRB1*10:01 (RA associated) and those bound to HLA-DRB1*15:01 (non-RA-associated) were purified and analyzed by liquid chromatography (LC) matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MS) and LC-ion-trap MS. Peptide pools from each allotype were compared in terms of size, protein origin, composition, and affinity (both theoretical and experimental with some peptides). Finally, 1 peptide sequenced from DR1, DR4, and DR10, but not from DR15, was modeled in complex with all 4 HLA-DRB1 molecules and HLA-DRB5*01:01. RESULTS: A total of 6,309 masses and 962 unique peptide sequences were compared. DR10 shared 29 peptides with DR1, 9 with DR4, and 1 with DR15; DR1 shared 6 peptides with DR4 and 9 with DR15; and DR4 and DR15 shared 4 peptides. The direct identification of peptide ligands indicated that DR1 and DR10 were the most similar molecules regarding the peptides that they could share. The peptides common to these molecules contained a high proportion of Leu at P4 and basic residues at P8 binding core positions. CONCLUSION: The degree of overlap between peptide repertoires associated with different HLA-DR molecules is low. The repertoires associated with DR1 and DR10 have the highest similarity among the molecules analyzed (∼10% overlap). Among the peptides shared between DR1 and DR10, a high proportion contained Leu(4) and basic residues at the P8 position of the binding core.


Subject(s)
Arthritis, Rheumatoid/metabolism , HLA-DRB1 Chains/metabolism , Peptides/metabolism , Amino Acid Sequence , Carrier Proteins/metabolism , Cell Line , Chromatography, Liquid , HLA-DR Serological Subtypes/metabolism , HLA-DR1 Antigen/metabolism , HLA-DR4 Antigen/metabolism , HLA-DRB5 Chains/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Lysosomal Membrane Proteins/metabolism , Receptors, LDL/metabolism , Receptors, Lipoprotein/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
J Proteomics ; 94: 23-36, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24029068

ABSTRACT

The thymus is the organ in which T lymphocytes mature. Thymocytes undergo exhaustive selection processes that require interactions between the TCRs and peptide-HLA complexes on thymus antigen-presenting cells. The thymic peptide repertoire associated with HLA molecules must mirror the peptidome that mature T cells will encounter at the periphery, including peptides that arise from tissue-restricted antigens. The transcriptome of specific thymus cell populations has been widely studied, but there are no data on the HLA-I peptidome of the human thymus. Here, we describe the HLA-I-bound peptide repertoire from thymus samples, showing that it is mostly composed of high-affinity ligands from cytosolic and nuclear proteins. Several proteins generated more than one peptide, and some redundant peptides were found in different samples, suggesting the existence of antigen immunodominance during the processes that lead to central tolerance. Three HLA-I ligands were found to be derived from proteins expressed by stromal cells, including one from the protein TBATA (or SPATIAL), which is present in the thymus, brain and testis. The expression of TBATA in medullary thymic epithelial cells has been reported to be AIRE dependent. Thus, this report describes the first identification of a thymus HLA-I natural ligand derived from an AIRE-dependent protein with restricted tissue expression. BIOLOGICAL SIGNIFICANCE: We present the first description of the HLA-I-bound peptide repertoire from ex vivo thymus samples. This repertoire is composed of standard ligands from cytosolic and nuclear proteins. Some peptides seem to be dominantly presented to thymocytes in the thymus. Most importantly, some HLA-I associated ligands derived from proteins expressed by stromal cells, including one peptide, restricted by HLA-A*31:01, arising from an AIRE-dependent protein with restricted tissue expression.


Subject(s)
Antigen Presentation/physiology , Histocompatibility Antigens Class I/metabolism , Peptides/metabolism , Proteome/metabolism , Thymus Gland/metabolism , Child , Child, Preschool , Female , Gene Expression Regulation/physiology , Humans , Infant , Male , Organ Specificity/physiology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...