Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol Evol ; 12(11): 2107-2124, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33049039

ABSTRACT

Whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae) are a superfamily of small phloem-feeding insects. They rely on their primary endosymbionts "Candidatus Portiera aleyrodidarum" to produce essential amino acids not present in their diet. Portiera has been codiverging with whiteflies since their origin and therefore reflects its host's evolutionary history. Like in most primary endosymbionts, the genome of Portiera stays stable across the Aleyrodidae superfamily after millions of years of codivergence. However, Portiera of the whitefly Bemisia tabaci has lost the ancestral genome order, reflecting a rare event in the endosymbiont evolution: the appearance of genome instability. To gain a better understanding of Portiera genome evolution, identify the time point in which genome instability appeared and contribute to the reconstruction of whitefly phylogeny, we developed a new phylogenetic framework. It targeted five Portiera genes and determined the presence of the DNA polymerase proofreading subunit (dnaQ) gene, previously associated with genome instability, and two alternative gene rearrangements. Our results indicated that Portiera gene sequences provide a robust tool for studying intergenera phylogenetic relationships in whiteflies. Using these new framework, we found that whitefly species from the Singhiella, Aleurolobus, and Bemisia genera form a monophyletic tribe, the Aleurolobini, and that their Portiera exhibit genome instability. This instability likely arose once in the common ancestor of the Aleurolobini tribe (at least 70 Ma), drawing a link between the appearance of genome instability in Portiera and the switch from multibacteriocyte to a single-bacteriocyte mode of inheritance in this tribe.


Subject(s)
Biological Evolution , DNA Polymerase III/genetics , Genomic Instability , Halomonadaceae/genetics , Hemiptera/microbiology , Acidosis , Animals , Genome, Bacterial , Halomonadaceae/metabolism , Symbiosis
2.
ISME J ; 14(3): 847-856, 2020 03.
Article in English | MEDLINE | ID: mdl-31896788

ABSTRACT

While most insect herbivores are selective feeders, a small proportion of them feed on a wide range of plants. This polyphagous habit requires overcoming a remarkable array of defenses, which often necessitates an adaptation period. Efforts for understanding the mechanisms involved mostly focus on the insect's phenotypic plasticity. Here, we hypothesized that the adaptation process might partially rely on transient associations with bacteria. To test this, we followed in a field-like experiment, the adaptation process of Bemisia tabaci, a generalist sap feeder, to pepper (a less-suitable host), after switching from watermelon (a suitable host). Amplicon sequencing of 16S rRNA transcripts from hundreds of dissected guts revealed the presence of active "core" and "transient" bacterial communities, dominated by the phyla Proteobacteria, Actinobacteria, and Firmicutes, and increasing differences between populations grown on watermelon and pepper. Insects grown on pepper for over two generations presented a significant increase in specific genera, mainly Mycobacterium, with a predicted enrichment in degradative pathways of xenobiotics and secondary metabolites. This result correlated with a significant increase in the insect's survival on pepper. Taken together, our findings suggest that gut-associated bacteria can provide an additional flexible metabolic "tool-box" to generalist sap feeders for facilitating a quick host switching process.


Subject(s)
Bacteria/isolation & purification , Hemiptera/microbiology , Microbiota , Plants/parasitology , Acclimatization , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/genetics , Feeding Behavior , Hemiptera/physiology , RNA, Ribosomal, 16S/genetics
3.
Insect Biochem Mol Biol ; 100: 10-21, 2018 09.
Article in English | MEDLINE | ID: mdl-29859812

ABSTRACT

Many phloem-feeding insects are considered severe pests of agriculture and are controlled mainly by chemical insecticides. Continued extensive use of these inputs is environmentally undesirable, and also leads to the development of insecticide resistance. Here, we used a plant-mediated RNA interference (RNAi) approach, to develop a new control strategy for phloem-feeding insects. The approach aims to silence "key" detoxification genes, involved in the insect's ability to neutralize defensive and toxic plant chemistry. We targeted a glutathione S-transferase (GST) gene, BtGSTs5, in the phloem-feeding whitefly Bemisia tabaci, a devastating global agricultural pest. We report three major findings. First, significant down regulation of the BtGSTs5 gene was obtained in the gut of B. tabaci when the insects were fed on Arabidopsis thaliana transgenic plants expressing dsRNA against BtGSTs5 under a phloem-specific promoter. This brings evidence that phloem-feeding insects can be efficiently targeted by plant-mediated RNAi. Second, in-silico and in-vitro analyses indicated that the BtGSTs5 enzyme can accept as substrates, hydrolyzed aliphatic- and indolic-glucosinolates, and produce their corresponding detoxified conjugates. Third, performance assays suggested that the BtGSTs5 gene silencing prolongs the developmental period of B. tabaci nymphs. Taken together, these findings suggest that BtGSTs5 is likely to play an important role in enabling B. tabaci to successfully feed on glucosinolate-producing plants. Targeting the gene by RNAi in Brassicaceae cropping systems, will likely not eliminate the pest populations from the fields but will significantly reduce their success over the growing season, support prominent activity of natural enemies, eventually allowing the establishment of stable and sustainable agroecosystem.


Subject(s)
Genes, Insect , Glucosinolates/metabolism , Hemiptera/metabolism , Insect Control/methods , RNA Interference , Animals , Female , Gene Targeting , Gossypium , Hemiptera/genetics , Inactivation, Metabolic , Male , Phloem , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...