Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Braz J Cardiovasc Surg ; 39(3): e20230066, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569061

ABSTRACT

Microvasculature failure is expected in sepsis and at higher amine concentrations. Therefore, special attention focused individually on microcirculation is needed. Here, we present that methylene blue can prevent leukocytes from adhering to the endothelium in a rat model of lipopolysaccharide-induced endotoxemia. As hypothesis evidence, an intravital microscopy image is presented.


Subject(s)
Sepsis , Vasoplegia , Rats , Animals , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Vasoconstrictor Agents , Vasoplegia/drug therapy , Sepsis/drug therapy , Intravital Microscopy
2.
Rev. bras. cir. cardiovasc ; 39(3): e20230066, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1559395

ABSTRACT

ABSTRACT Microvasculature failure is expected in sepsis and at higher amine concentrations. Therefore, special attention focused individually on microcirculation is needed. Here, we present that methylene blue can prevent leukocytes from adhering to the endothelium in a rat model of lipopolysaccharide-induced endotoxemia. As hypothesis evidence, an intravital microscopy image is presented.

3.
Front Physiol ; 10: 1614, 2019.
Article in English | MEDLINE | ID: mdl-32038294

ABSTRACT

Sepsis is a systemic inflammatory response syndrome (SIRS) resulting from a severe infection that is characterized by immune dysregulation, cardiovascular derangements, and end-organ dysfunction. The modification of proteins by O-linked N-acetylglucosamine (O-GlcNAcylation) influences many of the key processes that are altered during sepsis, including the production of inflammatory mediators and vascular contractility. Here, we investigated whether O-GlcNAc affects the inflammatory response and cardiovascular dysfunction associated with sepsis. Mice received an intraperitoneal injection of lipopolysaccharide (LPS, 20 mg/Kg) to induce endotoxic shock and systemic inflammation, resembling sepsis-induced SIRS. The effects of an acute increase in O-GlcNAcylation, by treatment of mice with glucosamine (GlcN, 300 mg/Kg, i.v.) or thiamet-G (ThG, 150 µg/Kg, i.v.), on LPS-associated mortality, production and release of cytokines by macrophages and vascular cells, vascular responsiveness to constrictors and blood pressure were then determined. Mice under LPS-induced SIRS exhibited a systemic and local inflammatory response with increased levels of interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor (TNF-α), as well as severe hypotension and vascular hyporesponsiveness, characterized by reduced vasoconstriction to phenylephrine. In addition, LPS increased neutrophil infiltration in lungs and produced significant lethality. Treatment with GlcN and ThG reduced systemic inflammation and attenuated hypotension and the vascular refractoriness to phenylephrine, improving survival. GlcN and ThG also decreased LPS-induced production of inflammatory cytokines by bone marrow-derived macrophages and nuclear transcription factor-kappa B (NF-κB) activation in RAW 264.7 NF-κB promoter macrophages. Treatment of mice with ThG increased O-glycosylation of NF-κB p65 subunit in mesenteric arteries, which was associated with reduced Ser536 phosphorylation of NF-κB p65. Finally, GlcN also increased survival rates in mice submitted to cecal ligation and puncture (CLP), a sepsis model. In conclusion, increased O-GlcNAc reduces systemic inflammation and cardiovascular disfunction in experimental sepsis models, pointing this pathway as a potential target for therapeutic intervention.

4.
Can J Physiol Pharmacol ; 96(3): 232-240, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28793197

ABSTRACT

Overproduction of superoxide anion (•O2-) and O-linked ß-N-acetylglucosamine (O-GlcNAc) modification in the vascular system are contributors to endothelial dysfunction. This study tested the hypothesis that increased levels of O-GlcNAc-modified proteins contribute to •O2- production via activation of NADPH oxidase, resulting in impaired vasodilation. Rat aortic segments and vascular smooth muscle cells (VSMCs) were incubated with vehicle (methanol) or O-(2-acetamido-2-deoxy-d-glucopyranosylidenamino) N-phenylcarbamate (PUGNAc) (100 µM). PUGNAc produced a time-dependent increase in O-GlcNAc levels in VSMC and decreased endothelium-dependent relaxation, which was prevented by apocynin and tiron, suggesting that •O2- contributes to endothelial dysfunction under augmented O-GlcNAc levels. Aortic segments incubated with PUGNAc also exhibited increased levels of reactive oxygen species, assessed by dihydroethidium fluorescence, and augmented •O2- production, determined by lucigenin-enhanced chemiluminescence. Additionally, PUGNAc treatment increased Nox-1 and Nox-4 protein expression in aortas and VSMCs. Translocation of the p47phox subunit from the cytosol to the membrane was greater in aortas incubated with PUGNAc. VSMCs displayed increased p22phox protein expression after PUGNAc incubation, suggesting that NADPH oxidase is activated in conditions where O-GlcNAc protein levels are increased. In conclusion, O-GlcNAc levels reduce endothelium-dependent relaxation by overproduction of •O2- via activation of NADPH oxidase. This may represent an additional mechanism by which augmented O-GlcNAc levels impair vascular function.


Subject(s)
Acetylglucosamine/metabolism , Aorta, Thoracic/physiology , Superoxides/metabolism , Animals , Aorta, Thoracic/metabolism , Endothelium, Vascular/metabolism , Enzyme Activation , Glycosylation , Male , NADPH Oxidases/metabolism , Rats , Rats, Wistar , Vasodilation
5.
Cardiovasc Diabetol ; 15(1): 119, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27562094

ABSTRACT

BACKGROUND: High fat diet (HFD) induces insulin resistance in various tissues, including the vasculature. HFD also increases plasma levels of TNF-α, a cytokine that contributes to insulin resistance and vascular dysfunction. Considering that the enzyme phosphatase and tension homologue (PTEN), whose expression is increased by TNF-α, reduces Akt signaling and, consequently, nitric oxide (NO) production, we hypothesized that PTEN contributes to TNF-α-mediated vascular resistance to insulin induced by HFD. Mechanisms underlying PTEN effects were determined. METHODS: Mesenteric vascular beds were isolated from C57Bl/6J and TNF-α KO mice submitted to control or HFD diet for 18 weeks to assess molecular mechanisms by which TNF-α and PTEN contribute to vascular dysfunction. RESULTS: Vasodilation in response to insulin was decreased in HFD-fed mice and in ex vivo control arteries incubated with TNF-α. TNF-α receptors deficiency and TNF-α blockade with infliximab abolished the effects of HFD and TNF-α on insulin-induced vasodilation. PTEN vascular expression (total and phosphorylated isoforms) was increased in HFD-fed mice. Treatment with a PTEN inhibitor improved insulin-induced vasodilation in HFD-fed mice. TNF-α receptor deletion restored PTEN expression/activity and Akt/eNOS/NO signaling in HFD-fed mice. CONCLUSION: TNF-α induces vascular insulin resistance by mechanisms that involve positive modulation of PTEN and inhibition of Akt/eNOS/NO signaling. Our findings highlight TNF-α and PTEN as potential targets to limit insulin resistance and vascular complications associated with obesity-related conditions.


Subject(s)
Diet, High-Fat , Insulin Resistance , Mesenteric Artery, Superior/enzymology , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Infliximab/pharmacology , Insulin/metabolism , Male , Mesenteric Artery, Superior/drug effects , Mesenteric Artery, Superior/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction/drug effects , Time Factors , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology , Vasodilation , Vasodilator Agents/pharmacology
6.
Clin Sci (Lond) ; 129(7): 533-45, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25967696

ABSTRACT

Mineralocorticoid receptors (MRs), which are activated by mineralocorticoids and glucocorticoids, actively participate in mechanisms that affect the structure and function of blood vessels. Although experimental and clinical evidence shows that vascular damage in diabetes is associated with structural alterations in large and small arteries, the role of MR in this process needs further studies. Thus, we tested the hypothesis that MR, through redox-sensitive mechanisms, plays a role in diabetes-associated vascular remodelling. Male, 12-14-weeks-old db/db mice, a model of type 2 diabetes and their non-diabetic counterpart controls (db/+) were treated with spironolactone (MR antagonist, 50 mg/kg/day) or vehicle for 6 weeks. Spironolactone treatment did not affect blood pressure, fasting glucose levels or weight gain, but increased serum potassium and total cholesterol in both, diabetic and control mice. In addition, spironolactone significantly reduced serum insulin levels, but not aldosterone levels in diabetic mice. Insulin sensitivity, evaluated by the HOMA (homoeostatic model assessment)-index, was improved in spironolactone-treated diabetic mice. Mesenteric resistance arteries from vehicle-treated db/db mice exhibited inward hypertrophic remodelling, increased number of smooth muscle cells and increased vascular stiffness. These structural changes, determined by morphometric analysis and with a myography for pressurized arteries, were prevented by spironolactone treatment. Arteries from vehicle-treated db/db mice also exhibited augmented collagen content, determined by Picrosirius Red staining and Western blotting, increased reactive oxygen species (ROS) generation, determined by dihydroethidium (DHE) fluorescence, as well as increased expression of NAD(P)H oxidases 1 and 4 and increased activity of mitogen-activated protein kinases (MAPKs). Spironolactone treatment prevented all these changes, indicating that MR importantly contributes to diabetes-associated vascular dysfunction by inducing oxidative stress and by increasing the activity of redox-sensitive proteins.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Mineralocorticoid Receptor Antagonists/chemistry , Receptors, Mineralocorticoid/physiology , Aldosterone/blood , Animals , Blood Glucose/drug effects , Blood Pressure/drug effects , Body Weight/drug effects , Cholesterol/blood , Collagen/chemistry , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Type 2/blood , Ethidium/analogs & derivatives , Ethidium/chemistry , Glucocorticoids/metabolism , Insulin/blood , Male , Mice , Mineralocorticoids/metabolism , Potassium/blood , Reactive Oxygen Species/chemistry , Spironolactone/therapeutic use
7.
Mediators Inflamm ; 2014: 896029, 2014.
Article in English | MEDLINE | ID: mdl-25125801

ABSTRACT

Cholecystokinin (CCK) was first described as a gastrointestinal hormone. However, apart from its gastrointestinal effects, studies have described that CCK also plays immunoregulatory roles. Taking in account the involvement of inducible nitric oxide synthase- (iNOS-) derived NO in the sepsis context, the present study was undertaken to investigate the role of CCK on iNOS expression in LPS-activated peritoneal macrophages. Our results revealed that CCK reduces NO production and attenuates the iNOS mRNA expression and protein formation. Furthermore, CCK inhibited the nuclear factor- (NF-) κB pathway reducing IκBα degradation and minor p65-dependent translocation to the nucleus. Moreover, CCK restored the intracellular cAMP content activating the protein kinase A (PKA) pathway, which resulted in a negative modulatory role on iNOS expression. In peritoneal macrophages, the CCK-1R expression, but not CCK-2R, was predominant and upregulated by LPS. The pharmacological studies confirmed that CCK-1R subtype is the major receptor responsible for the biological effects of CCK. These data suggest an anti-inflammatory role for the peptide CCK in modulating iNOS-derived NO synthesis, possibly controlling the macrophage activation through NF-κB, cAMP-PKA, and CCK-1R pathways. Based on these findings, CCK could be used as an adjuvant agent to modulate the inflammatory response and prevent systemic complications commonly found during sepsis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cholecystokinin/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Nitric Oxide Synthase Type II/metabolism , Animals , Lipopolysaccharides/pharmacology , Male , NF-kappa B/metabolism , Nitric Oxide/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects
8.
Shock ; 39(1): 104-13, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23247127

ABSTRACT

Cholecystokinin (CCK) was first described as a gastrointestinal hormone, but its receptors have been located in cardiac and vascular tissues, as well as in immune cells. Our aims were to investigate the role of CCK on lipopolysaccharide (LPS)-induced hypotension and its ability to modulate previously reported inflammatory mediators, therefore affecting cardiovascular function. To conduct these experiments, rats had their jugular vein cannulated for drug administration, and also, the femoral artery cannulated for mean arterial pressure (MAP) and heart rate records. Endotoxemia induced by LPS from Escherichia coli (1.5 mg/kg; i.v.) stimulated the release of CCK, a progressive drop in MAP, and increase in heart rate. Plasma tumor necrosis factor α (TNF-α), interleukin 10 (IL-10), nitrate, vasopressin, and lactate levels were elevated in the endotoxemic rats. The pretreatment with proglumide (nonselective CCK antagonist; 30 mg/kg; i.p.) aggravated the hypotension and also increased plasma TNF-α and lactate levels. On the other hand, CCK (0.4 µg/kg; i.v.) administered before LPS significantly restored MAP, reduced aortic and hepatic inducible nitric oxide synthase (iNOS) production, and elevated plasma vasopressin and IL-10 concentrations; it did not affect TNF-α. Physiological CCK concentration reduced nitrite and iNOS synthesis by peritoneal macrophages, possibly through a self-regulatory IL-10-dependent mechanism. Together, these data suggest a new role for the peptide CCK in modulating MAP, possibly controlling the inflammatory response, stimulating the anti-inflammatory cytokine, IL-10, and reducing vascular and macrophage iNOS-derived nitric oxide production. Based on these findings, CCK could be used as an adjuvant therapeutic agent to improve cardiovascular function.


Subject(s)
Cholecystokinin/therapeutic use , Endotoxemia/drug therapy , Hypotension/prevention & control , Inflammation Mediators/blood , Shock, Septic/drug therapy , Animals , Aorta/enzymology , Blood Pressure/drug effects , Cholecystokinin/antagonists & inhibitors , Cholecystokinin/blood , Cholecystokinin/pharmacology , Drug Evaluation, Preclinical/methods , Endotoxemia/blood , Endotoxemia/physiopathology , Heart Rate/drug effects , Interleukin-10/blood , Lactic Acid/blood , Lipopolysaccharides , Liver/enzymology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Male , Nitric Oxide Synthase Type II/biosynthesis , Proglumide/pharmacology , Rats , Rats, Wistar , Shock, Septic/blood , Shock, Septic/physiopathology , Tumor Necrosis Factor-alpha/metabolism , Vasopressins/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...