Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 110(35): 17671-7, 2006 Sep 07.
Article in English | MEDLINE | ID: mdl-16942113

ABSTRACT

Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a microreactor. This series included both non biologically relevant (pyridine, bipyridine, neocuproine, terpyridine, dimethylpyridine, ammonia, ethylenediamine, and 1,10-phenanthroline) and biologically relevant (histidine, glycine, and imidazole) ligands. It was found that when water is present as solvent, gas bubbles are formed under the influence of the X-ray beam. At the liquid-gas interface of these bubbles, in particular cases colloidal copper nanoparticles are formed. This reduction process was found to be influenced by the type of copper precursor salt (SO(4)(2-), NO(3)(-), and Cl(-)), the ligands surrounding the copper cation, and the redox potential of the copper complexes (ranging between +594 and -360 mV). In other words, in some cases, no reduction was encountered (e.g., ammonia in the presence of SO(4)(2-) and NO(3)(-)), whereas in other cases reduction to either Cu(+) (neocuproine with SO(4)(2-)) or Cu(0) (e.g., histidine and imidazole both with SO(4)(2-), NO(3)(-), and Cl(-)) was observed. These results illustrate the added value of video spectroscopy for the interpretation of in situ XANES studies. Not only do the results give an illustration of the parameters that are important in the redox processes that occur in biological systems, they also show the potential problems associated with studying catalytic processes in aqueous solutions by XANES spectroscopy.

2.
Chemistry ; 12(27): 7167-77, 2006 Sep 18.
Article in English | MEDLINE | ID: mdl-16807946

ABSTRACT

Structural analysis has been carried out on copper(II)-histidine (Cu(2+)/His) complexes after immobilization in the pore system of the zeolites NaY and de-aluminated NaY (DAY). The aim of this study was to determine the geometrical structure of Cu(2+)/His complexes after encaging, to obtain insight into both the effect of the zeolite matrix on the molecular structure and redox properties of the immobilized complexes. In addition to N(2) physisorption and X-ray fluorescence (XRF) analyses, a combination of UV/Vis/NIR, ESR, X-ray absorption (EXAFS and XANES), IR, and Raman spectroscopy was used to obtain complementary information on both the first coordination shell of the copper ion and the orientation of the coordinating His ligands. It was demonstrated that two complexes (A and B) are formed, of which the absolute and relative abundance depends on the Cu(2+)/His concentration in the ion-exchange solution and on the Si/Al ratio of the zeolite material. In complex A, one His ligand coordinates in a tridentate facial-like manner through N(am), N(im), and O(c), a fourth position being occupied by an oxygen atom from a zeolite Brønsted site. In complex B, two His ligands coordinate as bidentate ligands; one histamine-like (N(am), N(im)) and the other one glycine-like (N(am), O(c)). In particular the geometrical structure of complex A differs from the preferred structure of Cu(2+)/His complexes in aqueous solutions; this fact implies that the zeolite host material actively participates in the coordination and orientation of the guest molecules. The tendency for complex A to undergo reduction in inert atmosphere to Cu(1+) (as revealed by dynamic XANES studies) suggests activation of complex A by the interaction with the zeolite material. EXAFS analysis confirms the formation of a distorted four coordinate geometry of complex A, suggesting that the combination of zeolite and one His ligand force the Cu(2+) complex into an activated, entactic state.


Subject(s)
Copper/chemistry , Histidine/chemistry , Zeolites/chemistry , Electron Spin Resonance Spectroscopy , Spectrometry, X-Ray Emission , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet
3.
J Am Chem Soc ; 128(10): 3208-17, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16522101

ABSTRACT

The stabilization of a mononuclear copper(II) complex with one MIm2Pr ligand [MIm2Pr = 3,3-bis(1-methylimidazol-2-yl)propionate] in the supercages of zeolite Y was attempted, and the resulting materials were tested for their activity in oxidation catalysis. The preparation procedure yielded initially two species (labeled 1 and 2) within the pore system of the zeolite material, which differ in molecular structure and chemical composition as determined by UV/vis, ESR, IR, and XAFS spectroscopy. In species 1, the copper was found to be five-coordinated, with one MIm2Pr ligand in a facial-type NNO coordination toward copper, the other two coordination sites being occupied by oxygen atoms from either the zeolite framework and/or a water molecule. The total charge of this complex is 1+. In species 2, the copper is surrounded by two MIm2Pr ligands, both in a facial-type coordination mode, identical to the homogeneous Cu(MIm2Pr)2 complex. This neutral species 2 is easily washed out of the zeolite, whereas the mononuclear species 1 remains inside the zeolite material upon washing. The spectroscopic characteristics and activity for 3,5-di-tert-butylcatechol and benzyl alcohol oxidation of species 1 compared closely with that of the zeolite-immobilized Cu(histidine) complexes but differed from that of the homogeneous Cu(MIm2Pr)2 complex. It was therefore found that encapsulation in zeolite offers a route to stabilize a 5-fold-coordinated copper complex with novel catalytic properties. This 1:1 Cu(MIm2Pr) complex is not formed in solution.


Subject(s)
Carboxylic Acids/chemistry , Copper/chemistry , Histidine/analogs & derivatives , Imidazoles/chemistry , Propionates/chemistry , Zeolites/chemistry , Biomimetic Materials/chemistry , Catalysis , Models, Molecular , Nonheme Iron Proteins/chemistry , Organometallic Compounds/chemistry , Oxidation-Reduction , Spectrophotometry, Ultraviolet , Spectroscopy, Near-Infrared
4.
Inorg Chem ; 45(5): 1960-71, 2006 Mar 06.
Article in English | MEDLINE | ID: mdl-16499357

ABSTRACT

Aqueous solutions of Cu2+/histidine (his) (1:2) have been analyzed in parallel with infrared, Raman, ultraviolet/visible/near-infrared, electron spin resonance, and X-ray absorption spectroscopy in the pH range from 0 to 10. Comprehensive interpretation of the data has been used to extract complementary structural information in order to determine the relative abundance of the different complexes. The formation of six different, partly coexisting species is proposed. Structural proposals from literature have been unambiguously confirmed, refined, or, in several cases, corrected. At highly acidic conditions, Cu2+ and his are present as free ions, but around pH = 2, coordination starts via the deprotonated carboxylic acid group. This results in the intermediate species Cu2+[H3his+(Oc)] and Cu2+[H3his+(Oc)]2. The coordination via Oc is attended with a drop in the pKa value of the other receptor groups resulting in a concomitant conversion to the bidentates Cu2+[H2his0(Oc,Nam)] and Cu2+[H2his0(Oc,Nam)]2, with the latter being dominant at pH = 3.5. Coordination of the imidazole ring begins around pH = 3 and leads to the formation of the mixed ligand complexes Cu2+[H2his0(Oc,Nam)][Hhis-(Oc,Nam,Nim)] and Cu2+[Hhis-(Nam,Nim)][Hhis-(Oc,Nam,Nim)] around pH = 5. It is demonstrated that coordination of the imidazole ring occurs predominantly via the N(pi) atom. At pH > 7, the double-tridentate ligand complex Cu2+[Hhis-(Oc,Nam,Nim)]2 is the major species with the N atoms in the equatorial plane and the O atoms in the axial position. This complex decomposes at pH > 10 into a copper oxide/hydroxide precipitate. The overall results provide a consistent picture of the mechanism that drives the coordination and complex formation of the Cu2+/his system.

5.
J Phys Chem B ; 109(9): 4042-7, 2005 Mar 10.
Article in English | MEDLINE | ID: mdl-16851461

ABSTRACT

UV-vis spectroscopy was used in a combined in-situ UV-vis/XAFS spectroscopic setup to study the synchrotron radiation effect on aqueous homogeneous copper solutions. Two different systems were studied. In the first study, the focus was on a copper bipyridine-catalyzed oxidation of benzyl alcohol to benzaldehyde with 2,2,6,6- tetramethylpiperidinyl-1-oxy and base as cocatalysts. It was found that when the reaction mixture is exposed to the X-ray beam, the features present in the in-situ UV-vis spectrum develop differently compared to the situation when the reaction mixture is not exposed to the X-ray beam. Besides a temperature effect of the X-ray beam, both the UV-vis analysis and the XAFS analysis showed a reducing influence of the X-ray beam on the sample. To investigate this in more detail, we studied a series of dilute aqueous copper solutions from different precursor salts, viz., Cu(NO3)2.3H2O, CuSO4.5H2O, CuCl2, and CuBr2. It was found that the different aqueous copper solutions have different stabilities under the influence of the X-ray beam. Especially the solution from the CuCl2 precursor salt was found to be unstable and to be subjected to reduction. These examples illustrate the need for a second technique, such as in-situ UV-vis spectroscopy, to evaluate the effect of synchrotron radiation used to measure in-situ XAFS on catalytic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...