Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Transl Med ; 15(701): eabq7839, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37343080

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Heart Diseases , Animals , Child , Humans , Mice , Arrhythmias, Cardiac , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Heart Diseases/metabolism , Myocytes, Cardiac/metabolism , Pyrazoles/pharmacology
2.
Annu Rev Pharmacol Toxicol ; 63: 249-272, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-35973713

ABSTRACT

CaMKII (the multifunctional Ca2+ and calmodulin-dependent protein kinase II) is a highly validated signal for promoting a variety of common diseases, particularly in the cardiovascular system. Despite substantial amounts of convincing preclinical data, CaMKII inhibitors have yet to emerge in clinical practice. Therapeutic inhibition is challenged by the diversity of CaMKII isoforms and splice variants and by physiological CaMKII activity that contributes to learning and memory. Thus, uncoupling the harmful and beneficial aspects of CaMKII will be paramount to developing effective therapies. In the last decade, several targeting strategies have emerged, including small molecules, peptides, and nucleotides, which hold promise in discriminating pathological from physiological CaMKII activity. Here we review the cellular and molecular biology of CaMKII, discuss its role in physiological and pathological signaling, and consider new findings and approaches for developing CaMKII therapeutics.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Humans , Cardiovascular Diseases/drug therapy , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Arrhythmias, Cardiac , Cardiovascular System/metabolism , Signal Transduction/physiology
4.
Circulation ; 143(17): 1687-1703, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33593071

ABSTRACT

BACKGROUND: Heart failure is a leading cause of death worldwide and is associated with the rising prevalence of obesity, hypertension, and diabetes. O-GlcNAcylation (the attachment of O-linked ß-N-acetylglucosamine [O-GlcNAc] moieties to cytoplasmic, nuclear, and mitochondrial proteins) is a posttranslational modification of intracellular proteins and serves as a metabolic rheostat for cellular stress. Total levels of O-GlcNAcylation are determined by nutrient and metabolic flux, in addition to the net activity of 2 enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Failing myocardium is marked by increased O-GlcNAcylation, but whether excessive O-GlcNAcylation contributes to cardiomyopathy and heart failure is unknown. METHODS: We developed 2 new transgenic mouse models with myocardial overexpression of OGT and OGA to control O-GlcNAcylation independent of pathologic stress. RESULTS: We found that OGT transgenic hearts showed increased O-GlcNAcylation and developed severe dilated cardiomyopathy, ventricular arrhythmias, and premature death. In contrast, OGA transgenic hearts had lower O-GlcNAcylation but identical cardiac function to wild-type littermate controls. OGA transgenic hearts were resistant to pathologic stress induced by pressure overload with attenuated myocardial O-GlcNAcylation levels after stress and decreased pathologic hypertrophy compared with wild-type controls. Interbreeding OGT with OGA transgenic mice rescued cardiomyopathy and premature death, despite persistent elevation of myocardial OGT. Transcriptomic and functional studies revealed disrupted mitochondrial energetics with impairment of complex I activity in hearts from OGT transgenic mice. Complex I activity was rescued by OGA transgenic interbreeding, suggesting an important role for mitochondrial complex I in O-GlcNAc-mediated cardiac pathology. CONCLUSIONS: Our data provide evidence that excessive O-GlcNAcylation causes cardiomyopathy, at least in part, attributable to defective energetics. Enhanced OGA activity is well tolerated and attenuation of O-GlcNAcylation is beneficial against pressure overload-induced pathologic remodeling and heart failure. These findings suggest that attenuation of excessive O-GlcNAcylation may represent a novel therapeutic approach for cardiomyopathy.


Subject(s)
Death, Sudden/pathology , Heart Failure/physiopathology , N-Acetylglucosaminyltransferases/adverse effects , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic
5.
J Clin Invest ; 131(2)2021 01 19.
Article in English | MEDLINE | ID: mdl-33151911

ABSTRACT

Diabetes mellitus (DM) and atrial fibrillation (AF) are major unsolved public health problems, and diabetes is an independent risk factor for AF. However, the mechanism(s) underlying this clinical association is unknown. ROS and protein O-GlcNAcylation (OGN) are increased in diabetic hearts, and calmodulin kinase II (CaMKII) is a proarrhythmic signal that may be activated by ROS (oxidized CaMKII, ox-CaMKII) and OGN (OGN-CaMKII). We induced type 1 (T1D) and type 2 DM (T2D) in a portfolio of genetic mouse models capable of dissecting the role of ROS and OGN at CaMKII and global OGN in diabetic AF. Here, we showed that T1D and T2D significantly increased AF, and this increase required CaMKII and OGN. T1D and T2D both required ox-CaMKII to increase AF; however, we did not detect OGN-CaMKII or a role for OGN-CaMKII in diabetic AF. Collectively, our data affirm CaMKII as a critical proarrhythmic signal in diabetic AF and suggest ROS primarily promotes AF by ox-CaMKII, while OGN promotes AF by a CaMKII-independent mechanism(s). These results provide insights into the mechanisms for increased AF in DM and suggest potential benefits for future CaMKII and OGN targeted therapies.


Subject(s)
Atrial Fibrillation/enzymology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Diabetes Complications/enzymology , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Type 1/enzymology , Diabetes Mellitus, Type 2/enzymology , Acylation , Animals , Atrial Fibrillation/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Diabetes Complications/genetics , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Mice, Knockout , Oxidation-Reduction
6.
Cardiovasc Res ; 109(4): 542-57, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26762270

ABSTRACT

CaMKII is a serine-threonine protein kinase that is abundant in myocardium. Emergent evidence suggests that CaMKII may play an important role in promoting atrial fibrillation (AF) by targeting a diverse array of proteins involved in membrane excitability, cell survival, calcium homeostasis, matrix remodelling, inflammation, and metabolism. Furthermore, CaMKII inhibition appears to protect against AF in animal models and correct proarrhythmic, defective intracellular Ca(2+) homeostasis in fibrillating human atrial cells. This review considers current concepts and evidence from animal and human studies on the role of CaMKII in AF.


Subject(s)
Atrial Fibrillation/metabolism , Atrial Remodeling/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Heart Atria/metabolism , Myocardium/metabolism , Animals , Atrial Fibrillation/physiopathology , Heart Conduction System/metabolism , Humans
7.
J Interv Card Electrophysiol ; 41(2): 117-27, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25234602

ABSTRACT

INTRODUCTION: Mesenchymal stem cells (MSCs) have been associated with reduced arrhythmias; however, the mechanism of this action is unknown. In addition, limited retention and survival of MSCs can significantly reduce efficacy. We hypothesized that MSCs can improve impulse conduction and that alginate hydrogel will enhance retention of MSCs in a model of healed myocardial infarction (MI). METHODS AND RESULTS: Four weeks after temporary occlusion of the left anterior descending artery (LAD), pigs (n = 13) underwent a sternotomy to access the infarct and then were divided into two studies. In study 1, designed to investigate impulse conduction, animals were administered, by border zone injection, 9-15 million MSCs (n = 7) or phosphate-buffered saline (PBS) (control MI, n = 5). Electrogram width measured in the border zone 2 weeks after injections was significantly decreased with MSCs (-30 ± 8 ms, p < 0.008) but not in shams (4 ± 10 ms, p = NS). Optical mapping from border zone tissue demonstrated that conduction velocity was higher in regions with MSCs (0.49 ± 0.03 m/s) compared to regions without MSCs (0.39 ± 0.03 m/s, p < 0.03). In study 2, designed to investigate MSC retention, animals were administered an equal number of MSCs suspended in either alginate (2 or 1 % w/v) or PBS (n = 6/group) by border zone injection. Greater MSC retention and survival were observed with 2% alginate compared to PBS or 1% alginate. Confocal immunofluorescence demonstrated that MSCs survive and are associated with expression of connexin-43 (Cx43) for either PBS (control), 1%, or 2% alginate. CONCLUSIONS: For the first time, we are able to directly associate MSCs with improved impulse conduction and increased retention and survival using an alginate scaffold in a clinically relevant model of healed MI.


Subject(s)
Electrophysiologic Techniques, Cardiac , Heart Conduction System/physiology , Mesenchymal Stem Cell Transplantation/methods , Myocardial Infarction/therapy , Alginates/pharmacology , Analysis of Variance , Animals , Cell Culture Techniques , Cells, Cultured , Disease Models, Animal , Echocardiography, Doppler/methods , Electrocardiography/methods , Glucuronic Acid/pharmacology , Hexuronic Acids/pharmacology , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Microscopy, Confocal , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Random Allocation , Reference Values , Swine , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...