Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
2.
Trials ; 23(1): 487, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698099

ABSTRACT

BACKGROUND: Primary progressive aphasia (PPA) is a clinical dementia syndrome. Impairments in language (speaking, reading, writing, and understanding) are the primary and persistent symptoms. These impairments progress insidiously and devastate communication confidence, participation, and quality of life for persons living with PPA. Currently, there are no effective disease modifying treatments for PPA. Speech-language interventions hold promise for mitigating communication challenges and language symptoms. However, evidence regarding their efficacy in PPA is of low quality and there are currently no rigorous randomized trials. METHOD: Communication Bridge™-2 (CB2) is a Stage 2, superiority, single-blind, randomized, parallel group, active-control, behavioral clinical trial delivered virtually within a telehealth service delivery model to individuals with PPA. Ninety carefully characterized participants with clinically confirmed PPA will be randomized to one of two speech-language intervention arms: (1) Communication Bridge™ a dyadic intervention based in communication participation therapy models that incorporates salient training stimuli or (2) the control intervention a non-dyadic intervention based in impairment therapy models addressing word retrieval and language production that incorporates fixed stimuli. The superiority of Communication Bridge™ over the Control arm will be evaluated using primary outcomes of communication confidence and participation. Other outcomes include accuracy for trained words and scripts. Participants complete two therapy blocks over a 12-month period. Outcomes will be measured at baseline, at each therapy block, and at 12 months post enrollment. DISCUSSION: The CB2 trial will supply Level 2 evidence regarding the efficacy of the Communication Bridge™ intervention delivered in a telehealth service delivery model for individuals with mild to moderate PPA. An important by-product of the CB2 trial is that these data can be used to evaluate the efficacy of speech-language interventions delivered in both trial arms for persons with PPA. The impact of these data should not be overlooked as they will yield important insights examining why interventions work and for whom, which will advance effectiveness trials for speech-language interventions in PPA. TRIAL REGISTRATION: ClinicalTrials.gov NCT03371706 . Registered prospectively on December 13, 2017.


Subject(s)
Aphasia, Primary Progressive , Communication Disorders , Aphasia, Primary Progressive/diagnosis , Aphasia, Primary Progressive/therapy , Communication , Humans , Quality of Life , Single-Blind Method , Speech
3.
PLoS Genet ; 15(5): e1007947, 2019 05.
Article in English | MEDLINE | ID: mdl-31100073

ABSTRACT

Mutations in or dys-regulation of the TDP-43 gene have been associated with TDP-43 proteinopathy, a spectrum of neurodegenerative diseases including Frontotemporal Lobar Degeneration (FTLD) and Amyotrophic Lateral Sclerosis (ALS). The underlying molecular and cellular defects, however, remain unclear. Here, we report a systematic study combining analyses of patient brain samples with cellular and animal models for TDP-43 proteinopathy. Electron microscopy (EM) analyses of patient samples revealed prominent mitochondrial impairment, including abnormal cristae and a loss of cristae; these ultrastructural changes were consistently observed in both cellular and animal models of TDP-43 proteinopathy. In these models, increased TDP-43 expression induced mitochondrial dysfunction, including decreased mitochondrial membrane potential and elevated production of reactive oxygen species (ROS). TDP-43 expression suppressed mitochondrial complex I activity and reduced mitochondrial ATP synthesis. Importantly, TDP-43 activated the mitochondrial unfolded protein response (UPRmt) in both cellular and animal models. Down-regulating mitochondrial protease LonP1 increased mitochondrial TDP-43 levels and exacerbated TDP-43-induced mitochondrial damage as well as neurodegeneration. Together, our results demonstrate that TDP-43 induced mitochondrial impairment is a critical aspect in TDP-43 proteinopathy. Our work has not only uncovered a previously unknown role of LonP1 in regulating mitochondrial TDP-43 levels, but also advanced our understanding of the pathogenic mechanisms for TDP-43 proteinopathy. Our study suggests that blocking or reversing mitochondrial damage may provide a potential therapeutic approach to these devastating diseases.


Subject(s)
ATP-Dependent Proteases/genetics , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Frontotemporal Lobar Degeneration/genetics , Mitochondrial Proteins/genetics , TDP-43 Proteinopathies/genetics , Unfolded Protein Response , ATP-Dependent Proteases/metabolism , Adenosine Triphosphate/biosynthesis , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/metabolism , Brain/pathology , DNA-Binding Proteins/metabolism , Disease Models, Animal , Drosophila melanogaster , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression Regulation , HEK293 Cells , Humans , Membrane Potential, Mitochondrial/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Mutation , Reactive Oxygen Species/metabolism , Signal Transduction , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology
4.
Ann Neurol ; 84(5): 729-740, 2018 11.
Article in English | MEDLINE | ID: mdl-30255971

ABSTRACT

OBJECTIVE: To estimate the prevalence of amyloid positivity, defined by positron emission tomography (PET)/cerebrospinal fluid (CSF) biomarkers and/or neuropathological examination, in primary progressive aphasia (PPA) variants. METHODS: We conducted a meta-analysis with individual participant data from 1,251 patients diagnosed with PPA (including logopenic [lvPPA, n = 443], nonfluent [nfvPPA, n = 333], semantic [svPPA, n = 401], and mixed/unclassifiable [n = 74] variants of PPA) from 36 centers, with a measure of amyloid-ß pathology (CSF [n = 600], PET [n = 366], and/or autopsy [n = 378]) available. The estimated prevalence of amyloid positivity according to PPA variant, age, and apolipoprotein E (ApoE) ε4 status was determined using generalized estimating equation models. RESULTS: Amyloid-ß positivity was more prevalent in lvPPA (86%) than in nfvPPA (20%) or svPPA (16%; p < 0.001). Prevalence of amyloid-ß positivity increased with age in nfvPPA (from 10% at age 50 years to 27% at age 80 years, p < 0.01) and svPPA (from 6% at age 50 years to 32% at age 80 years, p < 0.001), but not in lvPPA (p = 0.94). Across PPA variants, ApoE ε4 carriers were more often amyloid-ß positive (58.0%) than noncarriers (35.0%, p < 0.001). Autopsy data revealed Alzheimer disease pathology as the most common pathologic diagnosis in lvPPA (76%), frontotemporal lobar degeneration-TDP-43 in svPPA (80%), and frontotemporal lobar degeneration-TDP-43/tau in nfvPPA (64%). INTERPRETATION: This study shows that the current PPA classification system helps to predict underlying pathology across different cohorts and clinical settings, and suggests that age and ApoE genotype should be considered when interpreting amyloid-ß biomarkers in PPA patients. Ann Neurol 2018;84:737-748.


Subject(s)
Amyloid beta-Peptides , Aphasia, Primary Progressive/pathology , Age Factors , Aged , Aged, 80 and over , Aphasia, Primary Progressive/genetics , Apolipoproteins E/genetics , Brain/pathology , Female , Genotype , Humans , Male , Middle Aged , Prevalence
5.
Acta Neuropathol Commun ; 5(1): 96, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29216908

ABSTRACT

Mutations in the stress granule protein T-cell restricted intracellular antigen 1 (TIA1) were recently shown to cause amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD). Here, we provide detailed clinical and neuropathological descriptions of nine cases with TIA1 mutations, together with comparisons to sporadic ALS (sALS) and ALS due to repeat expansions in C9orf72 (C9orf72+). All nine patients with confirmed mutations in TIA1 were female. The clinical phenotype was heterogeneous with a range in the age at onset from late twenties to the eighth decade (mean = 60 years) and disease duration from one to 6 years (mean = 3 years). Initial presentation was either focal weakness or language impairment. All affected individuals received a final diagnosis of ALS with or without FTD. No psychosis or parkinsonism was described. Neuropathological examination on five patients found typical features of ALS and frontotemporal lobar degeneration (FTLD-TDP, type B) with anatomically widespread TDP-43 proteinopathy. In contrast to C9orf72+ cases, caudate atrophy and hippocampal sclerosis were not prominent. Detailed evaluation of the pyramidal motor system found a similar degree of neurodegeneration and TDP-43 pathology as in sALS and C9orf72+ cases; however, cases with TIA1 mutations had increased numbers of lower motor neurons containing round eosinophilic and Lewy body-like inclusions on HE stain and round compact cytoplasmic inclusions with TDP-43 immunohistochemistry. Immunohistochemistry and immunofluorescence failed to demonstrate any labeling of inclusions with antibodies against TIA1. In summary, our TIA1 mutation carriers developed ALS with or without FTD, with a wide range in age at onset, but without other neurological or psychiatric features. The neuropathology was characterized by widespread TDP-43 pathology, but a more restricted pattern of neurodegeneration than C9orf72+ cases. Increased numbers of round eosinophilic and Lewy-body like inclusions in lower motor neurons may be a distinctive feature of ALS caused by TIA1 mutations.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Mutation/genetics , T-Cell Intracellular Antigen-1/genetics , Adult , Aged , Amyotrophic Lateral Sclerosis/complications , Autopsy , C9orf72 Protein/genetics , DNA-Binding Proteins/metabolism , Family Health , Female , Frontotemporal Dementia/complications , Humans , Male , Middle Aged , Neuropathology
6.
Alzheimers Dement ; 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29028480

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

7.
Neuron ; 95(4): 808-816.e9, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28817800

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 10-6). Postmortem neuropathology of five TIA1 mutations carriers showed a consistent pathological signature with numerous round, hyaline, TAR DNA-binding protein 43 (TDP-43)-positive inclusions. TIA1 mutations significantly increased the propensity of TIA1 protein to undergo phase transition. In live cells, TIA1 mutations delayed stress granule (SG) disassembly and promoted the accumulation of non-dynamic SGs that harbored TDP-43. Moreover, TDP-43 in SGs became less mobile and insoluble. The identification of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics in ALS/FTD pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Mutation/genetics , Poly(A)-Binding Proteins/genetics , Adult , Aged , DNA-Binding Proteins/metabolism , Family Health , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Heterogeneous Nuclear Ribonucleoprotein A1 , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Humans , Male , Microscopy, Confocal , Middle Aged , RNA-Binding Protein FUS/metabolism , Stress, Physiological/physiology , T-Cell Intracellular Antigen-1 , Time Factors , Transfection
8.
Brain ; 140(4): 1128-1146, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28334843

ABSTRACT

Mutations in the gene encoding tau (MAPT) cause frontotemporal dementia spectrum disorders. A rare tau variant p.A152T was reported as a risk factor for frontotemporal dementia spectrum and Alzheimer's disease in an initial case-control study. Such findings need replication in an independent cohort. We analysed an independent multinational cohort comprising 3100 patients with neurodegenerative disease and 4351 healthy control subjects and found p.A152T associated with significantly higher risk for clinically defined frontotemporal dementia and progressive supranuclear palsy syndrome. To assess the functional and biochemical consequences of this variant, we generated transgenic zebrafish models expressing wild-type or A152T-tau, where A152T caused neurodegeneration and proteasome compromise. Impaired proteasome activity may also enhance accumulation of other proteins associated with this variant. We increased A152T clearance kinetics by both pharmacological and genetic upregulation of autophagy and ameliorated the disease pathology observed in A152T-tau fish. Thus, autophagy-upregulating therapies may be a strategy for the treatment for tauopathies.


Subject(s)
Autophagy , Heredodegenerative Disorders, Nervous System/genetics , Heredodegenerative Disorders, Nervous System/therapy , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/therapy , Tauopathies/genetics , Tauopathies/therapy , Zebrafish , tau Proteins/genetics , Alleles , Animals , Autophagy-Related Protein 5 , Behavior, Animal , Disease Models, Animal , Embryo, Nonmammalian , Frontotemporal Dementia/genetics , Humans , Kinetics , Polymorphism, Single Nucleotide , Proteasome Endopeptidase Complex/genetics , RNA/biosynthesis , RNA/genetics , Tauopathies/psychology , Zebrafish Proteins , tau Proteins/metabolism
9.
Neurology ; 86(15): 1393-1399, 2016 04 12.
Article in English | MEDLINE | ID: mdl-26992858

ABSTRACT

OBJECTIVE: To determine if behavioral symptoms in patients with primary progressive aphasia (PPA) were associated with degeneration of a ventral frontotemporal network. METHODS: We used diffusion tensor imaging tractography to quantify abnormalities of the uncinate fasciculus that connects the anterior temporal lobe and the ventrolateral frontal cortex. Two additional ventral tracts were studied: the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus. We also measured cortical thickness of anterior temporal and orbitofrontal regions interconnected by these tracts. Thirty-three patients with PPA and 26 healthy controls were recruited. RESULTS: In keeping with the PPA diagnosis, behavioral symptoms were distinctly less prominent than the language deficits. Although all 3 tracts had structural pathology as determined by tractography, significant correlations with scores on the Frontal Behavioral Inventory were found only for the uncinate fasciculus. Cortical atrophy of the orbitofrontal and anterior temporal lobe cortex was also correlated with these scores. CONCLUSIONS: Our findings indicate that damage to a frontotemporal network mediated by the uncinate fasciculus may underlie the emergence of behavioral symptoms in patients with PPA.


Subject(s)
Aphasia, Primary Progressive/diagnostic imaging , Behavioral Symptoms/diagnostic imaging , Frontal Lobe/diagnostic imaging , Limbic System/diagnostic imaging , Occipital Lobe/diagnostic imaging , Temporal Lobe/diagnostic imaging , Aged , Aphasia, Primary Progressive/psychology , Atrophy , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Humans , Language Tests , Male , Middle Aged , Neural Pathways/diagnostic imaging , Organ Size , Severity of Illness Index , White Matter/diagnostic imaging
10.
PLoS Genet ; 11(9): e1005357, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26335776

ABSTRACT

FUS-proteinopathies, a group of heterogeneous disorders including ALS-FUS and FTLD-FUS, are characterized by the formation of inclusion bodies containing the nuclear protein FUS in the affected patients. However, the underlying molecular and cellular defects remain unclear. Here we provide evidence for mitochondrial localization of FUS and its induction of mitochondrial damage. Remarkably, FTLD-FUS brain samples show increased FUS expression and mitochondrial defects. Biochemical and genetic data demonstrate that FUS interacts with a mitochondrial chaperonin, HSP60, and that FUS translocation to mitochondria is, at least in part, mediated by HSP60. Down-regulating HSP60 reduces mitochondrially localized FUS and partially rescues mitochondrial defects and neurodegenerative phenotypes caused by FUS expression in transgenic flies. This is the first report of direct mitochondrial targeting by a nuclear protein associated with neurodegeneration, suggesting that mitochondrial impairment may represent a critical event in different forms of FUS-proteinopathies and a common pathological feature for both ALS-FUS and FTLD-FUS. Our study offers a potential explanation for the highly heterogeneous nature and complex genetic presentation of different forms of FUS-proteinopathies. Our data also suggest that mitochondrial damage may be a target in future development of diagnostic and therapeutic tools for FUS-proteinopathies, a group of devastating neurodegenerative diseases.


Subject(s)
Chaperonin 60/metabolism , Drosophila Proteins/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Animals , Animals, Genetically Modified , Cells, Cultured , Drosophila , Drosophila Proteins/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , Mitochondria/metabolism , Neurons/metabolism , Phenotype , Protein Binding , Reactive Oxygen Species/metabolism
11.
Psychiatr Clin North Am ; 38(2): 333-52, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25998120

ABSTRACT

The goal of the Care Pathway Model for Dementia (CARE-D) is to improve quality of life and daily functioning both for individuals diagnosed with dementia and for their families or other caregivers. This is accomplished by developing individualized recommendations focused on a person's strengths and weaknesses as determined by formal neurocognitive and psychosocial evaluations. Careful attention is given to the stage of illness and an individual's stage in life, to connecting families with services that target an individual's cognitive and behavioral symptoms, and to providing education and emotional support specific to symptoms, clinical diagnosis, and prognosis.


Subject(s)
Alzheimer Disease , Behavioral Symptoms , Frontotemporal Dementia , Psychological Techniques , Quality of Life , Age of Onset , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Alzheimer Disease/rehabilitation , Alzheimer Disease/therapy , Behavioral Symptoms/diagnosis , Behavioral Symptoms/therapy , Caregivers/psychology , Emotional Intelligence , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/psychology , Frontotemporal Dementia/rehabilitation , Frontotemporal Dementia/therapy , Humans , Neuropsychological Tests , Social Support
12.
Alzheimers Dement ; 10(5 Suppl): S430-52, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25341459

ABSTRACT

With increasing numbers of people with Alzheimer's and other dementias across the globe, many countries have developed national plans to deal with the resulting challenges. In the United States, the National Alzheimer's Project Act, signed into law in 2011, required the creation of such a plan with annual updates thereafter. Pursuant to this, the US Department of Health and Human Services (HHS) released the National Plan to Address Alzheimer's Disease in 2012, including an ambitious research goal of preventing and effectively treating Alzheimer's disease by 2025. To guide investments, activities, and the measurement of progress toward achieving this 2025 goal, in its first annual plan update (2013) HHS also incorporated into the plan a set of short, medium and long-term milestones. HHS further committed to updating these milestones on an ongoing basis to account for progress and setbacks, and emerging opportunities and obstacles. To assist HHS as it updates these milestones, the Alzheimer's Association convened a National Plan Milestone Workgroup consisting of scientific experts representing all areas of Alzheimer's and dementia research. The workgroup evaluated each milestone and made recommendations to ensure that they collectively constitute an adequate work plan for reaching the goal of preventing and effectively treating Alzheimer's by 2025. This report presents these Workgroup recommendations.


Subject(s)
Alzheimer Disease/prevention & control , Alzheimer Disease/therapy , Health Policy , Alzheimer Disease/epidemiology , Alzheimer Disease/physiopathology , Animals , Biological Ontologies , Biomarkers/metabolism , Drug Discovery , Humans , Patient Selection , Public-Private Sector Partnerships , Translational Research, Biomedical/methods , United States , United States Dept. of Health and Human Services , Voluntary Health Agencies
13.
Mol Neurodegener ; 9: 38, 2014 Sep 20.
Article in English | MEDLINE | ID: mdl-25239657

ABSTRACT

BACKGROUND: Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are causative for frontotemporal dementia (FTD) and motor neuron disease (MND). Substantial phenotypic heterogeneity has been described in patients with these expansions. We set out to identify genetic modifiers of disease risk, age at onset, and survival after onset that may contribute to this clinical variability. RESULTS: We examined a cohort of 330 C9ORF72 expansion carriers and 374 controls. In these individuals, we assessed variants previously implicated in FTD and/or MND; 36 variants were included in our analysis. After adjustment for multiple testing, our analysis revealed three variants significantly associated with age at onset (rs7018487 [UBAP1; p-value = 0.003], rs6052771 [PRNP; p-value = 0.003], and rs7403881 [MT-Ie; p-value = 0.003]), and six variants significantly associated with survival after onset (rs5848 [GRN; p-value = 0.001], rs7403881 [MT-Ie; p-value = 0.001], rs13268953 [ELP3; p-value = 0.003], the epsilon 4 allele [APOE; p-value = 0.004], rs12608932 [UNC13A; p-value = 0.003], and rs1800435 [ALAD; p-value = 0.003]). CONCLUSIONS: Variants identified through this study were previously reported to be involved in FTD and/or MND, but we are the first to describe their effects as potential disease modifiers in the presence of a clear pathogenic mutation (i.e. C9ORF72 repeat expansion). Although validation of our findings is necessary, these variants highlight the importance of protein degradation, antioxidant defense and RNA-processing pathways, and additionally, they are promising targets for the development of therapeutic strategies and prognostic tests.


Subject(s)
Frontotemporal Dementia/genetics , Motor Neuron Disease/genetics , Proteins/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , C9orf72 Protein , DNA Repeat Expansion/genetics , Female , Frontotemporal Dementia/mortality , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Male , Middle Aged , Motor Neuron Disease/mortality , Phenotype , Polymerase Chain Reaction , Proportional Hazards Models
14.
Hum Mol Genet ; 23(25): 6863-77, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25113748

ABSTRACT

TDP-43 proteinopathies are clinically and genetically heterogeneous diseases that had been considered distinct from classical amyloid diseases. Here, we provide evidence for the structural similarity between TDP-43 peptides and other amyloid proteins. Atomic force microscopy and electron microscopy examination of peptides spanning a previously defined amyloidogenic fragment revealed a minimal core region that forms amyloid fibrils similar to the TDP-43 fibrils detected in FTLD-TDP brain tissues. An ALS-mutant A315E amyloidogenic TDP-43 peptide is capable of cross-seeding other TDP-43 peptides and an amyloid-ß peptide. Sequential Nuclear Overhauser Effects and double-quantum-filtered correlation spectroscopy in nuclear magnetic resonance (NMR) analyses of the A315E-mutant TDP-43 peptide indicate that it adopts an anti-parallel ß conformation. When added to cell cultures, the amyloidogenic TDP-43 peptides induce TDP-43 redistribution from the nucleus to the cytoplasm. Neuronal cultures in compartmentalized microfluidic-chambers demonstrate that the TDP-43 peptides can be taken up by axons and induce axonotoxicity and neuronal death, thus recapitulating key neuropathological features of TDP-43 proteinopathies. Importantly, a single amino acid change in the amyloidogenic TDP-43 peptide that disrupts fibril formation also eliminates neurotoxicity, supporting that amyloidogenesis is critical for TDP-43 neurotoxicity.


Subject(s)
Amyloid beta-Peptides/chemistry , Cerebral Cortex/drug effects , DNA-Binding Proteins/toxicity , Neurons/drug effects , TDP-43 Proteinopathies/metabolism , Amino Acid Sequence , Animals , Cell Death/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cytoplasm/drug effects , Cytoplasm/metabolism , DNA-Binding Proteins/chemical synthesis , DNA-Binding Proteins/chemistry , HEK293 Cells , Humans , Microfluidic Analytical Techniques , Molecular Sequence Data , Neurons/metabolism , Neurons/pathology , Primary Cell Culture , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Transport/drug effects , Rats , TDP-43 Proteinopathies/pathology
15.
Neurobiol Aging ; 35(10): 2421.e13-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24866401

ABSTRACT

Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are an important cause of both motor neuron disease (MND) and frontotemporal dementia (FTD). Currently, little is known about factors that could account for the phenotypic heterogeneity detected in C9ORF72 expansion carriers. In this study, we investigated 4 genes that could represent genetic modifiers: ataxin-2 (ATXN2), non-imprinted in Prader-Willi/Angelman syndrome 1 (NIPA1), survival motor neuron 1 (SMN1), and survival motor neuron 2 (SMN2). Assessment of these genes, in a unique cohort of 331 C9ORF72 expansion carriers and 376 control subjects, revealed that intermediate repeat lengths in ATXN2 possibly act as disease modifier in C9ORF72 expansion carriers; no evidence was provided for a potential role of NIPA1, SMN1, or SMN2. The effects of intermediate ATXN2 repeats were most profound in probands with MND or FTD/MND (2.1% vs. 0% in control subjects, p = 0.013), whereas the frequency in probands with FTD was identical to control subjects. Though intermediate ATXN2 repeats were already known to be associated with MND risk, previous reports did not focus on individuals with clear pathogenic mutations, such as repeat expansions in C9ORF72. Based on our present findings, we postulate that intermediate ATXN2 repeat lengths may render C9ORF72 expansion carriers more susceptible to the development of MND; further studies are needed, however, to validate our findings.


Subject(s)
DNA Repeat Expansion/genetics , Genetic Association Studies , Heterozygote , Nerve Tissue Proteins/genetics , Proteins/genetics , Adult , Ataxins , C9orf72 Protein , Cohort Studies , Frontotemporal Dementia/genetics , Humans , Male , Membrane Proteins/genetics , Middle Aged , Motor Neuron Disease/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
17.
J Neuropathol Exp Neurol ; 73(5): 467-73, 2014 May.
Article in English | MEDLINE | ID: mdl-24709683

ABSTRACT

Understanding of frontotemporal lobar degeneration, the underlying pathology most often linked to the clinical diagnosis of frontotemporal dementia, is rapidly increasing. Mutations in 7 known genes (MAPT, GRN, C9orf72, VCP, CHMP2B, and, rarely, TARDBP and FUS) are associated with frontotemporal dementia, and the pathologic classification of frontotemporal lobar degeneration has recently been modified to reflect these discoveries. Mutations in one of these genes (GRN), which encodes progranulin, have been implicated in up to a quarter of cases of frontotemporal lobar degeneration with TDP-43 (TAR DNA-binding protein 43)-positive inclusions; currently, there are more than 60 known pathogenic mutations of the gene. We present the clinical, pathologic, and genetic findings on 6 cases from 4 families, 5 of which were shown to have a novel GRN c.708+6_+9delTGAG mutation.


Subject(s)
DNA-Binding Proteins/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , Intercellular Signaling Peptides and Proteins/genetics , Mutation/genetics , Aged , Aged, 80 and over , DNA-Binding Proteins/biosynthesis , Female , Gene Expression Regulation , Humans , Inclusion Bodies/genetics , Male , Middle Aged , Progranulins
18.
Acta Neuropathol ; 127(3): 397-406, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24385136

ABSTRACT

Variants in transmembrane protein 106 B (TMEM106B) modify the disease penetrance of frontotemporal dementia (FTD) in carriers of progranulin (GRN) mutations. We investigated whether TMEM106B is also a genetic modifier of disease in carriers of chromosome 9 open reading frame 72 (C9ORF72) expansions. We assessed the genotype of 325 C9ORF72 expansion carriers (cohort 1), 586 FTD patients lacking C9ORF72 expansions [with or without motor neuron disease (MND); cohort 2], and a total of 1,302 controls for TMEM106B variants (rs3173615 and rs1990622) using MassArray iPLEX and Taqman genotyping assays. For our primary analysis, we focused on functional variant rs3173615, and employed a recessive genotypic model. In cohort 1, patients with C9ORF72 expansions showed a significantly reduced frequency of carriers homozygous for the minor allele as compared to controls [11.9 vs. 19.1 %, odds ratio (OR) 0.57, p = 0.014; same direction as carriers of GRN mutations]. The strongest evidence was provided by FTD patients (OR 0.33, p = 0.009) followed by FTD/MND patients (OR 0.38, p = 0.017), whereas no significant difference was observed in MND patients (OR 0.85, p = 0.55). In cohort 2, the frequency of carriers homozygous for the minor allele was not significantly reduced in patients as compared to controls (OR 0.77, p = 0.079); however, a significant reduction was observed when focusing on those patients with frontotemporal lobar degeneration and TAR DNA-binding protein 43 inclusions (FTLD-TDP; OR 0.26, p < 0.001). Our study identifies TMEM106B as the first genetic factor modifying disease presentation in C9ORF72 expansion carriers. Homozygosity for the minor allele protects carriers from developing FTD, but not from developing MND; similar effects are seen in FTLD-TDP patients with yet unknown genetic causes. These new findings show that the protective effects of TMEM106B are not confined to carriers of GRN mutations and might be relevant for prognostic testing, and as a promising therapeutic target for the entire spectrum of FTLD-TDP.


Subject(s)
Frontotemporal Dementia/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Proteins/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Alleles , C9orf72 Protein , Cohort Studies , DNA Repeat Expansion , DNA-Binding Proteins/metabolism , Female , Frontotemporal Dementia/complications , Frontotemporal Dementia/metabolism , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Male , Middle Aged , Models, Genetic , Motor Neuron Disease/complications , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Polymorphism, Single Nucleotide
19.
Neurology ; 81(15): 1332-41, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24027057

ABSTRACT

OBJECTIVE: To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases. METHODS: A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology. RESULTS: We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217 families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mutations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN mutation demonstrated a long repeat expansion in brain (>3,000 repeats), and immunohistochemistry showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRN mutations. CONCLUSIONS: Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could contribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings suggest that patients with known mutations should not be excluded from further studies, and that genetic counselors should be aware of this phenomenon when advising patients and their family members.


Subject(s)
DNA Repeat Expansion/genetics , Genetic Predisposition to Disease/genetics , Neurodegenerative Diseases/genetics , Proteins/genetics , Aged , Aged, 80 and over , Autopsy , C9orf72 Protein , Cohort Studies , Female , Follow-Up Studies , Genetic Testing , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Microtubule-Associated Proteins/genetics , Middle Aged , Phenotype , Progranulins , tau Proteins/genetics
20.
Brain ; 136(Pt 8): 2619-28, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23820597

ABSTRACT

The frontal aslant tract is a direct pathway connecting Broca's region with the anterior cingulate and pre-supplementary motor area. This tract is left lateralized in right-handed subjects, suggesting a possible role in language. However, there are no previous studies that have reported an involvement of this tract in language disorders. In this study we used diffusion tractography to define the anatomy of the frontal aslant tract in relation to verbal fluency and grammar impairment in primary progressive aphasia. Thirty-five patients with primary progressive aphasia and 29 control subjects were recruited. Tractography was used to obtain indirect indices of microstructural organization of the frontal aslant tract. In addition, tractography analysis of the uncinate fasciculus, a tract associated with semantic processing deficits, was performed. Damage to the frontal aslant tract correlated with performance in verbal fluency as assessed by the Cinderella story test. Conversely, damage to the uncinate fasciculus correlated with deficits in semantic processing as assessed by the Peabody Picture Vocabulary Test. Neither tract correlated with grammatical or repetition deficits. Significant group differences were found in the frontal aslant tract of patients with the non-fluent/agrammatic variant and in the uncinate fasciculus of patients with the semantic variant. These findings indicate that degeneration of the frontal aslant tract underlies verbal fluency deficits in primary progressive aphasia and further confirm the role of the uncinate fasciculus in semantic processing. The lack of correlation between damage to the frontal aslant tract and grammar deficits suggests that verbal fluency and grammar processing rely on distinct anatomical networks.


Subject(s)
Aphasia, Broca/physiopathology , Aphasia, Primary Progressive/physiopathology , Frontal Lobe/physiopathology , Language , Nerve Net/physiopathology , Speech/physiology , Aged , Aphasia, Broca/complications , Aphasia, Primary Progressive/complications , Brain Mapping , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , Neural Pathways/physiopathology , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...