Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Biol (Weinh) ; : e2400066, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741244

ABSTRACT

The recent push toward understanding an individual cell's behavior and identifying cellular heterogeneity has created an unmet need for technologies that can probe live cells at the single-cell level. Cells within a population are known to exhibit heterogeneous responses to environmental cues. These differences can lead to varied cellular states, behavior, and responses to therapeutics. Techniques are needed that are not only capable of processing and analyzing cellular populations at the single cell level, but also have the ability to isolate specific cell populations from a complex sample at high throughputs. The new CellMag-Coalesce-Attract-Resegment Wash (CellMag-CARWash) system combines positive magnetic selection with droplet microfluidic devices to isolate cells of interest from a mixture with >93% purity and incorporate treatments within individual droplets to observe single cell biological responses. This workflow is shown to be capable of probing the single cell extracellular vesicle (EV) secretion of MCF7 GFP cells. This article reports the first measurement of ß-Estradiol's effect on EV secretion from MCF7 cells at the single cell level. Single cell processing revealed that MCF7 GFP cells possess a heterogeneous response to ß-Estradiol stimulation with a 1.8-fold increase relative to the control.

2.
Anal Chem ; 95(34): 12605-12612, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37585356

ABSTRACT

Droplet-based microfluidic systems possess many fundamental advantages as a platform for the analysis of chemical and biological species. However, whereas on-chip operations have rapidly developed over the past decades, approaches for analyzing target molecules within droplets have largely remained limited to methods requiring bulky and expensive instrumentation. In this work, we describe a droplet analysis approach whereby the droplet train itself is the sensing construct. Specifically, the droplet train is interrogated as a transmission phase grating, allowing high-throughput, label-free, solution-phase, and multi-parametric analysis of droplet contents. Importantly, three distinct properties of generated droplets can be simultaneously extracted using this conceptually simple and experimentally straightforward measurement approach. Under constant droplet generation conditions, measurement of droplet viscosity is achieved by monitoring changes in zero order to first order peak separation in the far-field diffraction pattern, with a sensitivity of 2.28 × 10-4 cSt per µm change in peak separation. In parallel, measurement of droplet refractive index (RI) is achieved by measuring changes in the ratio of the zero order to first order peak intensity, with a sensitivity of 2.14 × 10-4 RI units per unit change in a diffracted peak intensity ratio. Finally, droplet generation frequency is determined from the time-varying oscillation of the peak height ratio, yielding comparable results to an expensive high-speed camera commonly used for droplet imaging. Importantly, the experimental strategy for this approach is straightforward and does not require expensive instrumentation; therefore, it may find utility in affordable and portable analysis approaches applied to diverse droplet microfluidic assays.

4.
ACS Sens ; 5(5): 1419-1426, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32314582

ABSTRACT

The ability to detect trace analytes without necessitating solid surface attachment or complicated processing steps would facilitate the translation of sensors for monitoring environmental toxins in the field. To address a critical unmet need in fresh water ecology, we have developed a dual-modal aptamer-based biosensor (aptasensor), featuring fluorescence and surface-enhanced Raman spectroscopy (SERS), for sensitive and selective detection of hepatotoxin microcystin-LR (MC-LR). The rational sensor design is based on the high affinity of the cyanine (Cy3) dye-modified complementary DNA (Cy3-cDNA) strand toward the plasmonic gold nanostars (GNSs) in comparison to the Cy3-cDNA/aptamer duplex. The preferential binding of MC-LR toward the MC-LR-specific aptamer triggers the dissociation of Cy3-cDNA/aptamer duplexes, which switches the Cy3's fluorescence "off" and SERS "on" due to the proximity of Cy3 dye to the GNS surface. Both fluorescence and SERS intensities are observed to vary linearly with the MC-LR concentration over the range of investigation. We have achieved high sensitivity and excellent specificity with the aptasensor toward MC-LR, which can be attributed to the fluorescence quenching effect, significant SERS enhancement by the GNSs, and the high affinity of the aptamer toward the MC-LR analytes. We further demonstrate the applicability of the present aptasensor for detection of MC-LR in a diverse set of real water samples with high accuracy and excellent reproducibility. With further refinement, we believe that the aptamer-driven complementary assembly of the SERS and fluorescence sensing constructs can be applied for rapid, multiplexed, and robust measurements of environmental toxins in the field.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Gold , Reproducibility of Results , Spectrum Analysis, Raman
5.
Lab Chip ; 19(18): 3065-3076, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31389447

ABSTRACT

Widespread commercial and clinical adaptation of biomedical microfluidic technology has been limited in large part due to the lack of mass producibility of polydimethylsiloxane (PDMS) and glass-based devices commonly as reported in the literature. Here, we present a batch-fabricated, robust, and mass-producible immunophenotyping microfluidic device using silicon micromachining processes. Our Si and glass-based microfluidic device, named the silicon microfluidic immunophenotyping assay (SiMIPA), consists of a highly porous (∼40%) silicon membrane that can selectively separate microparticles below a certain size threshold. The device is capable of isolating and stimulating specific leukocyte populations, and allows for measuring their secretion of cell signaling proteins by means of a no-wash homogeneous chemiluminescence-based immunoassay. The high manufacturing throughput (∼170 devices per wafer) makes a large quantity of SiMIPA chips readily available for clinically relevant applications, which normally require large dataset acquisitions for statistical accuracy. With 30 SiMIPA chips, we performed in vitro immunomodulatory drug screening on isolated leukocyte subsets, yielding 5 data points at 6 drug concentrations. Furthermore, the excellent structural integrity of the device allowed for samples and reagents to be loaded using a micropipette, greatly simplifying the experimental protocol.


Subject(s)
Immunologic Factors/pharmacology , Immunophenotyping , Leukocytes/drug effects , Silicon/chemistry , Cells, Cultured , Drug Evaluation, Preclinical , Humans , Jurkat Cells , Leukocytes/immunology , Microfluidic Analytical Techniques/instrumentation , Particle Size , Porosity , Surface Properties
6.
ACS Nano ; 11(1): 603-612, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28068078

ABSTRACT

Focusing and enriching submicrometer and nanometer scale objects is of great importance for many applications in biology, chemistry, engineering, and medicine. Here, we present an acoustofluidic chip that can generate single vortex acoustic streaming inside a glass capillary through using low-power acoustic waves (only 5 V is required). The single vortex acoustic streaming that is generated, in conjunction with the acoustic radiation force, is able to enrich submicrometer- and nanometer-sized particles in a small volume. Numerical simulations were used to elucidate the mechanism of the single vortex formation and were verified experimentally, demonstrating the focusing of silica and polystyrene particles ranging in diameter from 80 to 500 nm. Moreover, the acoustofluidic chip was used to conduct an immunoassay in which nanoparticles that captured fluorescently labeled biomarkers were concentrated to enhance the emitted signal. With its advantages in simplicity, functionality, and power consumption, the acoustofluidic chip we present here is promising for many point-of-care applications.


Subject(s)
Microfluidic Analytical Techniques , Nanoparticles/chemistry , Biomarkers/chemistry , Fluorescence , Microfluidic Analytical Techniques/instrumentation , Point-of-Care Systems , Polystyrenes/chemistry , Sound
SELECTION OF CITATIONS
SEARCH DETAIL
...