Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31632, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828296

ABSTRACT

New particle formation (NPF) is considered a major source of aerosol particles and cloud condensation nuclei (CCN); however, our understanding of NPF and the subsequent particle growth mechanisms in coastal areas remains limited. This study provides evidence of frequent NPF events followed by particle growth in the middle Adriatic Sea during the summer months at the coastal station of Rogoznica in Croatia. To our knowledge, this is the first study to report such events in this region. Our research aims to improve the understanding of NPF by investigating particle growth through detailed physicochemical characterization and event classification. We used a combination of online measurements and offline particle collection, followed by a thorough chemical analysis. Our results suggest the role of bromine in the particle growth process and provide evidence for its involvement in combination with organic compounds. In addition, we demonstrated the significant influence of surface-active substances (SAS) on particle growth. NPF and particle growth events have been observed in air masses originating from the Adriatic Sea, which can serve as an important source of volatile organic compounds (VOC). Our study shows an intricate interplay between bromine, organic carbon (OC), and SAS in atmospheric particle growth, contributing to a better understanding of coastal NPF processes. In this context, we also introduced a new approach using the semi-empirical 1st derivative method to determine the growth rate for each time point that is not sensitive to the nonlinear behavior of the particle growth over time. We observed that during NPF and particle growth event days, the OC concentration measured in the ultrafine mode particle fraction was higher compared to non-event days. Moreover, in contrast to non-event days, bromine compounds were detected in the ultrafine mode atmospheric particle fraction on nearly all NPF and particle growth event days. Regarding sulfuric acid, the measured sulfate concentration in the ultrafine mode atmospheric particle fraction on both NPF event and non-event days showed no significant differences. This suggests that sulfuric acid may not be the primary factor influencing the appearance of NPF and the particle growth process in the coastal region of Rogoznica.

2.
ACS Appl Mater Interfaces ; 16(23): 30196-30208, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814245

ABSTRACT

Rapid and reliable immunosensing is undoubtedly one of the priorities in the efficient management and combat against a pandemic, as society has experienced with the SARS-CoV-2 outbreak; simple and cost-effective sensing strategies are at the forefront of these efforts. In this regard, 2D-layered MXenes hold great potential for electrochemical biosensing due to their attractive physicochemical properties. Herein, we present a V2CTx MXene-based sensing layer as an integral part of a label-free immunosensor for sensitive and selective detection of the SARS-CoV-2 spike protein. The sensor was fabricated on a supporting screen-printed carbon electrode using Nafion as an immobilizing agent for MXene and glutaraldehyde, the latter enabling effective binding of protein A for further site-oriented immobilization of anti-SARS-CoV-2 antibodies. A thorough structural analysis of the sensor architecture was carried out, and several key parameters affecting the fabrication and analytical performance of the immunosensor were investigated and optimized. The immunosensor showed excellent electroanalytical performance in combination with an impedimetric approach and exhibited a low detection limit of only 45 fM SARS-CoV-2 spike protein. Its practical applicability was successfully demonstrated by measuring the spike protein in a spiked artificial nasopharyngeal fluid sample.


Subject(s)
Biosensing Techniques , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/analysis , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Biosensing Techniques/methods , Humans , Immunoassay/methods , Limit of Detection , COVID-19/diagnosis , COVID-19/virology , Electrochemical Techniques/methods , Electrodes
3.
Talanta ; 263: 124699, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37267882

ABSTRACT

Laser beam profiles in analytical laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) instruments are in general homogenized to produce a flat-top beam profile. However, in practice, they are mostly super-Gaussian in nature, and for small laser beam sizes (<5 µm) they even approach a Gaussian profile. This implies that the amount of surface material sampled by the laser (=ablation volume) directly depends on the beam profile and ablation grid. By contraction of the ablation grid (=sub-pixel mapping) not only more accurate surface sampling is realized, but also a higher pixel density, an improved spatial resolution, and a better signal-to-noise ratio. Although LA sampling is predominantly performed on an orthogonal grid, hexagonal or staggered/interleaved sampling may further improve the image quality as regular hexagons are more compact than squares (=lower perimeter/area) and suffer less from orientation bias (=lower anisotropy). Due to the current limitations of LA stages in executing precise hexagonal sampling with small beam sizes, computational protocols were employed to simulate LA-ICP-MS mapping. Simulation was performed by discrete convolution using the crater profile as the kernel, followed by the application/addition of Poisson/Flicker noise related to the local concentration and instrumental sensitivity/noise. A freely accessible online app was developed (https://laicpms-apps.ki.si/webapps/home/) to study the effect of sampling grid contraction (orthogonal and hexagonal) on the image map quality (spatial resolution and signal-to-noise ratio) by virtual ablation of phantoms. Comparison of experimental LA-ICP-MS maps obtained through orthogonal and hexagonal sampling methods could only be performed using a beam size of 150 µm and a macroscale inkjet-printed resolution target. This was due to the unavailability of precise hexagonal sampling stages and microscale resolution targets, which prevented the use of smaller beam sizes.

4.
Anal Chem ; 95(26): 9863-9871, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37262129

ABSTRACT

This study aims to investigate the potential benefits of adapting the ablating grid in two-dimensional (2D) and three-dimensional (3D) laser ablation inductively coupled plasma mass spectrometry in a single pulse mapping mode. The goals include enhancing the accuracy of surface sampling of element distributions, improving the control of depth-related sampling, smoothing the post-ablation surface for layer-by-layer sampling, and increasing the image quality. To emulate the capabilities of currently unavailable laser ablation stages, a computational approach using geometrical modeling was employed to compound square or round experimentally obtained 3D crater profiles on variable orthogonal or hexagonal ablation grids. These grids were optimized by minimizing surface roughness as a function of average ablation depth, followed by simulating the post-ablation surface and related image quality. An online application (https://laicpms-apps.ki.si/webapps/home/) is available for users to virtually experiment with contracting/expanding orthogonal and hexagonal ablation grids for generic 3D super-Gaussian laser crater profiles, allowing for exploration of the resulting post-ablation surface layer roughness and depth.

5.
Anal Chem ; 95(19): 7804-7812, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37122168

ABSTRACT

Laser ablation (LA) in combination with inductively coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) enables monitoring of elements from the entire mass range for every pixel, regardless of the isotopes of interest for a certain application. This provides nontargeted multi-element (bio-)imaging capabilities and the unique possibility to screen for elements that were initially not expected in the sample. Quantification of a large range of elements is limited as the preparation of highly multiplexed calibration standards for bioimaging applications by LA-ICP-(TOF)MS is challenging. In this study, we have developed a workflow for semiquantitative analysis by LA-ICP-TOFMS based on multi-element gelatin micro-droplet standards. The presented approach is intended for the mapping of biological samples due to the requirement of matrix-matched standards for accurate quantification in LA-ICPMS, a prerequisite that is given by the use of gelatin-based standards. A library of response factors was constructed based on 72 elements for the semiquantitative calculations. The presented method was evaluated in two stages: (i) on gelatin samples with known elemental concentrations and (ii) on real-world samples that included prime examples of bioimaging (mouse spleen and tumor tissue). The developed semiquantification approach was based on 10 elements as calibration standards and provided the determination of 136 nuclides of 63 elements, with errors below 25%, and for half of the nuclides, below 10%. A web application for quantification and semiquantification of LA-ICP(-TOF)MS data was developed, and a detailed description is presented to easily allow others to use the presented method.


Subject(s)
Gelatin , Laser Therapy , Mice , Animals , Mass Spectrometry/methods , Spectrum Analysis , Food
6.
Talanta ; 235: 122785, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517643

ABSTRACT

Elemental LA-ICPMS mapping in continuous scanning mode gathers the counts generated upon laser ablation in line scanning mode. Acquisition of counts can be performed for each single laser pulse separately or by summing the counts of multiple laser pulses. Conventionally, pixels in an LA-ICPMS map are associated with spot-resolved single laser pulses (zero-dimensional, 0D), but also sub-pixel convolution strategies are in use, associated with one-dimensional (1D) or two-dimensional (2D) overlapping laser shots, and where possible followed by deblurring. The imaging quality of several 0D, 1D, and 2D LA-ICPMS strategies were compared for mapping of (ultra)low-concentration samples, both via computational and experimental approaches. The data presented will be helpful to make the right decision about the best possible LA-ICPMS mapping strategy for the highest image quality.


Subject(s)
Laser Therapy , Lasers , Mass Spectrometry , Spectrum Analysis
7.
Anal Chem ; 91(9): 6200-6205, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30929434

ABSTRACT

In the past decade, the development of single particle-inductively coupled plasma mass spectrometry (SP-ICPMS) has revolutionized the field of nanometallomics. Besides differentiation between dissolved and particulate metal signals, SP-ICPMS can quantify the nanoparticle (NP) number concentration and size. Because SP-ICPMS is limited to characterization of NPs in solution, we show how solid sampling by laser ablation (LA) adds spatial-resolution characteristics for localized NP analysis in biomaterials. Using custom-made gelatin standards doped with dissolved gold and commercial or synthesized gold nanoparticles, LA-SP-ICPMS conditions such as laser fluence, beam size, and dwell time were optimized for NP analysis to minimize NP degradation, peak overlap, and interferences from dissolved gold. A data-processing algorithm to retrieve the NP number concentration and size was developed for this purpose. As a proof-of-concept, a sunflower-root-sample cross-section, originating from a sunflower plant exposed to gold NPs, was successfully imaged using the optimized LA-SP-ICPMS conditions for localized NP characterization.


Subject(s)
Biocompatible Materials/chemistry , Gold/analysis , Metal Nanoparticles/analysis , Laser Therapy , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...