Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 100(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35652468

ABSTRACT

Gluconate salts have been identified as a butyrate precursor when fed to non-ruminant species and may increase the butyrate concentration in the large intestine supporting gastrointestinal health and development. The objective of this study was to evaluate the dose response of hydrogenated fat-embedded calcium gluconate (HFCG) on performance and gastrointestinal tract (GIT) development in growing lambs. Thirty-two wether lambs were used in a randomized complete block design and assigned to 1 of 4 treatments differing in the inclusion of HFCG: 0.0% (CON), 0.075% (LOW), 0.30% (MED), and 0.60% of the diet (HIGH). Lambs were allocated into individual pens and fed ad libitum with feed delivered twice daily. Feed intake was recorded daily, and body weight (BW) was assessed at the beginning and the end of the 29-d period. Blood was sampled on day 21, prior to feeding and 6 h post-feeding to evaluate changes in ß-hydroxybutyrate, glucose, and insulin concentrations. Total fecal collection was conducted during days 25 to 28 to assess apparent total tract digestibility. On day 29, lambs were slaughtered, and the entire GIT was separated by region to enable sampling of tissue and digesta. Data were analyzed to assess linear, quadratic, and cubic effects of HFCG dose. Final BW, average daily gain, and dry matter intake decreased linearly (P ≤ 0.02) with increasing HFCG. Increasing inclusion of HFCG linearly decreased (P = 0.01) the thickness of the stratum corneum in ruminal papillae but did not affect other strata (P ≥ 0.34). Omasal digesta weight linearly decreased (P = 0.01) as the concentration of HFCG increased and abomasal digesta weight was cubically affected (P = 0.03) the increasing dose of HFCG. Short-chain fatty acid concentration in the cecum was cubically affected (P < 0.01) with increasing dose of HFCG where low dose had the greatest concentration. Moreover, increasing the dietary supply of HFCG linearly increased the proportion of acetate (P = 0.04) in the cecum and linearly decreased the proportion of propionate in the digesta of both the cecum (P < 0.01) and colon (P = 0.01). Colon crypt depth was quadratically (P = 0.03) affected with the increasing dose of HFCG, where lambs fed MED had greatest crypt depth. We conclude that feeding HFCG to growing lambs did not increase butyrate concentration in the large intestine and consequently does not increase the absorptive surface area of the whole tract, the size of the GIT, or the functionality of the intestine.


Gluconate salts have been reported to be metabolized by microbes in the gastrointestinal tract to yield butyrate. Butyrate has shown potential to enhance functionality of the gastrointestinal tract by increasing the absorptive surface area, enzyme activity, and the barrier function. This study evaluated the inclusion of four levels of hydrogenated fat-embedded Ca-gluconate (HFCG; 0.0%, 0.075%, 0.30%, and 0.60% of the diet) designed to increase the production of butyrate in the large intestine. Thirty-two wether lambs were fed for 28 d, slaughtered, and eviscerated to allow complete evaluation of the gastrointestinal tract and its contents. Growth and dry matter intake decreased linearly with increasing dose of HFCG. Dose of HFCG cubically affected short-chain fatty acid concentration in the cecum with increased concentrations at the 0.075% dose. Moreover, increasing dose of HFCG linearly increased the proportion of acetate and linearly decreased the proportion of propionate in the cecum without altering the proportion of butyrate. Thus, the supplementation of HFCG did not increase butyrate concentration in the large intestine and did not enhance gastrointestinal tract function.


Subject(s)
Digestion , Rumen , Animal Feed/analysis , Animals , Butyrates/metabolism , Calcium Gluconate/metabolism , Calcium Gluconate/pharmacology , Diet/veterinary , Eating , Fermentation , Gastrointestinal Tract/metabolism , Intestine, Large/metabolism , Male , Microvilli/metabolism , Rumen/metabolism , Sheep , Sheep, Domestic
2.
J Dairy Sci ; 102(2): 1274-1280, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30591339

ABSTRACT

Gluconic acid is a carboxylic acid naturally occurring in plants and honey. In nonruminant animals, gluconic acid has been shown to increase gastrointestinal butyrate concentrations and improve growth performance, but a ruminant application remains undescribed. This experiment examined the effects of postruminal calcium gluconate (CaG) on milk production, fecal volatile fatty acid concentrations, and plasma metabolite concentrations in lactating dairy cows. Six rumen cannulated multiparous Holstein cows (60 ± 6 d in milk) were randomly assigned to 6 treatment sequences within a 6 × 6 Latin square design in which each experimental period consisted of 5 d of continuous postruminal infusion followed by a 2 d wash-out period. Test treatments included a negative control (CON; 0.90% NaCl wt/vol), positive control (Na-butyrate, 135 g/d), and 4 doses of CaG (44, 93, 140, and 187 g/d). Cows received a total mixed ration (31% corn silage, 28% alfalfa silage, 5% hay, 36% concentrate) with dry matter intake fixed (25.3 ± 1.7 kg/d) throughout the experiment. On d 5 of each infusion period, samples of milk, feces, and blood were collected from each animal. Calcium gluconate treatments increased milk fat concentration, and a tendency was observed for increased milk fat yield and energy-corrected milk yield above levels achieved by CON, with maximal treatment responses of 4.43% (CON 3.81%), 2.089 kg/d (CON 1.760 kg/d), and 51.8 kg/d (CON 47.1 kg/d), respectively. Concentrations of iso-butyric acid in feces were greater in cows infused with CaG (13.3 µmol/g) treatments compared with CON (9.7 µmol/g). Arterial concentrations of glucose and nonesterified fatty acids were lower (glucose: CaG 2.98 mmol/L, CON 3.29 mmol/L and nonesterified fatty acids: CaG 0.130 mmol/L vs. 0.148 mmol/L) and ß-hydroxybutyrate higher (CaG 1.703 vs. CON 0.812) in cows infused with CaG than CON. Together, these results suggest that postruminal infusion of CaG may alter metabolic mechanisms to support a milk fat production response.


Subject(s)
Calcium Gluconate/metabolism , Cattle/physiology , Fatty Acids, Volatile/chemistry , Feces/chemistry , Milk/metabolism , Rumen/metabolism , 3-Hydroxybutyric Acid/analysis , 3-Hydroxybutyric Acid/metabolism , Animals , Butyric Acid/metabolism , Diet/veterinary , Fatty Acids, Volatile/metabolism , Female , Lactation/physiology , Medicago sativa/metabolism , Milk/chemistry , Silage/analysis , Zea mays/metabolism
3.
J Dairy Sci ; 98(11): 7846-55, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26342977

ABSTRACT

Deficiencies and imbalances of specific group II essential amino acids (EAA) were created in lactating cows by an infusion subtraction protocol to explore effects on milk production and abundance and phosphorylation state of regulators of mRNA translation in the mammary glands. Five lactating cows on a diet of 11.2% crude protein were infused abomasally for 5d with saline, 563 g/d of a complete EAA mix, or EAA mixes without the branched-chain amino acids (BCAA), Leu, or Lys in a 5 × 5 Latin square design. Milk protein yield was stimulated by EAA infusion and returned to saline levels upon subtraction of BCAA, Leu, or Lys. Mammary abundance of phosphorylated S6K1 was measured as an indicator of mammalian target of rapamycin complex 1 (mTORC1) activity and was found not to be affected by the complete EAA mix but was increased by the mixture lacking Lys. Total S6K1 abundances in mammary tissue were elevated by complete and BCAA-lacking infusions. All of the EAA treatments except the one lacking BCAA upregulated mammary eIF2Bε and eIF2α abundances, which is stimulatory to global mRNA translation. Phosphorylation state of eIF2Bε tended to decrease when complete or Lys-lacking EAA mixtures were infused. Phosphorylation state of eIF2α was not affected by treatment. We detected a correlation of 0.62 between phosphorylation state of S6K1 and total eIF2Bε abundance, and a correlation of 0.58 between phosphorylation state of S6K1 and total eIF2α abundance, suggesting that mTORC1 activation may have upregulated eIF2Bε and eIF2α expression. Despite maintenance of mammary eIF2Bε and eIF2α abundances during Leu and Lys deficiencies, milk protein yield declined, suggesting that other factors are responsible for mediating effects of Lys and Leu. A deficiency of all 3 BCAA may impair milk protein yield through deactivation of mTORC1-mediated upregulation of eIF2Bε and eIF2α abundances.


Subject(s)
Amino Acids, Branched-Chain/deficiency , Cattle/metabolism , Gene Expression Regulation/physiology , Lysine/deficiency , Mammary Glands, Animal/metabolism , Protein Biosynthesis/genetics , Abomasum/metabolism , Amino Acids, Essential/administration & dosage , Animals , Diet/veterinary , Dietary Proteins/administration & dosage , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2B/genetics , Female , Lactation/physiology , Mammary Glands, Animal/chemistry , Mechanistic Target of Rapamycin Complex 1 , Milk/chemistry , Milk Proteins/analysis , Milk Proteins/biosynthesis , Milk Proteins/genetics , Multiprotein Complexes/metabolism , Phosphorylation , Ribosomal Protein S6 Kinases, 70-kDa/analysis , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...