Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5428, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109505

ABSTRACT

Ice cores and offshore sedimentary records demonstrate enhanced ice loss along Antarctic coastal margins during millennial-scale warm intervals within the last glacial termination. However, the distal location and short temporal coverage of these records leads to uncertainty in both the spatial footprint of ice loss, and whether millennial-scale ice response occurs outside of glacial terminations. Here we present a >100kyr archive of periodic transitions in subglacial precipitate mineralogy that are synchronous with Late Pleistocene millennial-scale climate cycles. Geochemical and geochronologic data provide evidence for opal formation during cold periods via cryoconcentration of subglacial brine, and calcite formation during warm periods through the addition of subglacial meltwater originating from the ice sheet interior. These freeze-flush cycles represent cyclic changes in subglacial hydrologic-connectivity driven by ice sheet velocity fluctuations. Our findings imply that oscillating Southern Ocean temperatures drive a dynamic response in the Antarctic ice sheet on millennial timescales, regardless of the background climate state.

2.
Nat Commun ; 11(1): 4005, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32778658

ABSTRACT

Surface temperature is a fundamental parameter of Earth's climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.

3.
Sci Rep ; 10(1): 7989, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32409728

ABSTRACT

Reconstructing long-term continental temperature change provides the required counterpart to age equivalent marine records and can reveal how terrestrial and marine temperatures were related during times of extreme climate change such as the Miocene Climatic Optimum (MCO) and the following Middle Miocene Climatic Transition (MMCT). Carbonate clumped isotope temperatures (T(Δ47)) from 17.5 to 14.0 Ma Central European paleosols (Molasse Basin, Switzerland) display a temperature pattern during the MCO that is similar to coeval marine temperature records. Maximum temperatures in the long-term soil T(Δ47) record (at 16.5 and 14.9 Ma) lag maximum ocean bottom water temperatures, lead global ice volume, and mark the initiation of minimum global ice volume phases. The suggested onset of the MMCT, deduced by a marked and rapid decline in Molasse Basin soil temperatures is coeval with cooling reported in high-latitudinal marine records. This is best explained by a change in the seasonal timing of soil carbonate formation that was likely driven by a modification of rainfall seasonality and thus by a major reorganization of mid-latitude atmospheric circulation across Central Europe. In particular, our data suggest a strong climate coupling between the North Atlantic and Central Europe already in the middle Miocene.

4.
Isotopes Environ Health Stud ; 52(1-2): 12-28, 2016.
Article in English | MEDLINE | ID: mdl-25685933

ABSTRACT

It is well known that a subtle nonlinearity can occur during clumped isotope analysis of CO2 that - if remaining unaddressed - limits accuracy. The nonlinearity is induced by a negative background on the m/z 47 ion Faraday cup, whose magnitude is correlated with the intensity of the m/z 44 ion beam. The origin of the negative background remains unclear, but is possibly due to secondary electrons. Usually, CO2 gases of distinct bulk isotopic compositions are equilibrated at 1000 °C and measured along with the samples in order to be able to correct for this effect. Alternatively, measured m/z 47 beam intensities can be corrected for the contribution of secondary electrons after monitoring how the negative background on m/z 47 evolves with the intensity of the m/z 44 ion beam. The latter correction procedure seems to work well if the m/z 44 cup exhibits a wider slit width than the m/z 47 cup. Here we show that the negative m/z 47 background affects precision of dual inlet-based clumped isotope measurements of CO2 unless raw m/z 47 intensities are directly corrected for the contribution of secondary electrons. Moreover, inaccurate results can be obtained even if the heated gas approach is used to correct for the observed nonlinearity. The impact of the negative background on accuracy and precision arises from small imbalances in m/z 44 ion beam intensities between reference and sample CO2 measurements. It becomes the more significant the larger the relative contribution of secondary electrons to the m/z 47 signal is and the higher the flux rate of CO2 into the ion source is set. These problems can be overcome by correcting the measured m/z 47 ion beam intensities of sample and reference gas for the contributions deriving from secondary electrons after scaling these contributions to the intensities of the corresponding m/z 49 ion beams. Accuracy and precision of this correction are demonstrated by clumped isotope analysis of three internal carbonate standards. The proposed correction scheme can be easily applied if the slit width of the m/z 49 Faraday cup is bigger than that of the m/z 47 cup.


Subject(s)
Carbon Dioxide/analysis , Carbon/analysis , Carbonates/analysis , Mass Spectrometry/methods , Oxygen/analysis , Carbon Isotopes/analysis , Oxygen Isotopes/analysis , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...