Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Am Chem Soc ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994607

ABSTRACT

Interests in covalent drugs have grown in modern drug discovery as they could tackle challenging targets traditionally considered "undruggable". The identification of covalent binders to target proteins typically involves directly measuring protein covalent modifications using high-resolution mass spectrometry. With a continually expanding library of compounds, conventional mass spectrometry platforms such as LC-MS and SPE-MS have become limiting factors for high-throughput screening. Here, we introduce a prototype high-resolution acoustic ejection mass spectrometry (AEMS) system for the rapid screening of a covalent modifier library comprising ∼10,000 compounds against a 50 kDa-sized target protein─Werner syndrome helicase. The screening samples were arranged in a 1536-well format. The sample buffer containing high-concentration salts was directly analyzed without any cleanup steps, minimizing sample preparation efforts and ensuring protein stability. The entire AEMS analysis process could be completed within a mere 17 h. An automated data analysis tool facilitated batch processing of the sample data and quantitation of the formation of various covalent protein-ligand adducts. The screening results displayed a high degree of fidelity, with a Z' factor of 0.8 and a hit rate of 2.3%. The identified hits underwent orthogonal testing in a biochemical activity assay, revealing that 75% were functional antagonists of the target protein. Notably, a comparative analysis with LC-MS showcased the AEMS platform's low risk of false positives or false negatives. This innovative platform has enabled robust high-throughput covalent modifier screening, featuring a 10-fold increase in library size and a 10- to 100-fold increase in throughput when compared with similar reports in the existing literature.

2.
J Med Chem ; 65(24): 16801-16817, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36475697

ABSTRACT

Inhibition of leucine-rich repeat kinase 2 (LRRK2) kinase activity represents a genetically supported, chemically tractable, and potentially disease-modifying mechanism to treat Parkinson's disease. Herein, we describe the optimization of a novel series of potent, selective, central nervous system (CNS)-penetrant 1-heteroaryl-1H-indazole type I (ATP competitive) LRRK2 inhibitors. Type I ATP-competitive kinase physicochemical properties were integrated with CNS drug-like properties through a combination of structure-based drug design and parallel medicinal chemistry enabled by sp3-sp2 cross-coupling technologies. This resulted in the discovery of a unique sp3-rich spirocarbonitrile motif that imparted extraordinary potency, pharmacokinetics, and favorable CNS drug-like properties. The lead compound, 25, demonstrated exceptional on-target potency in human peripheral blood mononuclear cells, excellent off-target kinase selectivity, and good brain exposure in rat, culminating in a low projected human dose and a pre-clinical safety profile that warranted advancement toward pre-clinical candidate enabling studies.


Subject(s)
Parkinson Disease , Rats , Humans , Animals , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease/drug therapy , Indazoles/pharmacology , Indazoles/therapeutic use , Leukocytes, Mononuclear/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Brain/metabolism , Adenosine Triphosphate
3.
RSC Med Chem ; 12(7): 1164-1173, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34355182

ABSTRACT

The discovery of potent, kinome selective, brain penetrant LRRK2 inhibitors is the focus of extensive research seeking new, disease-modifying treatments for Parkinson's disease (PD). Herein, we describe the discovery and evolution of a picolinamide-derived lead series. Our initial optimization efforts aimed at improving the potency and CLK2 off-target selectivity of compound 1 by modifying the heteroaryl C-H hinge and linker regions. This resulted in compound 12 which advanced deep into our research operating plan (ROP) before heteroaryl aniline metabolite 14 was characterized as Ames mutagenic, halting its progression. Strategic modifications to our ROP were made to enable early de-risking of putative aniline metabolites or hydrolysis products for mutagenicity in Ames. This led to the discovery of 3,5-diaminopyridine 15 and 4,6-diaminopyrimidine 16 as low risk for mutagenicity (defined by a 3-strain Ames negative result). Analysis of key matched molecular pairs 17 and 18 led to the prioritization of the 3,5-diaminopyridine sub-series for further optimization due to enhanced rodent brain penetration. These efforts culminated in the discovery of ethyl trifluoromethyl pyrazole 23 with excellent LRRK2 potency and expanded selectivity versus off-target CLK2.

4.
J Med Chem ; 64(8): 5137-5156, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33797901

ABSTRACT

The approvals of idelalisib and duvelisib have validated PI3Kδ inhibitors for the treatment for hematological malignancies driven by the PI3K/AKT pathway. Our program led to the identification of structurally distinct heterocycloalkyl purine inhibitors with excellent isoform and kinome selectivity; however, they had high projected human doses. Improved ligand contacts gave potency enhancements, while replacement of metabolic liabilities led to extended half-lives in preclinical species, affording PI3Kδ inhibitors with low once-daily predicted human doses. Treatment of C57BL/6-Foxp3-GDL reporter mice with 30 and 100 mg/kg/day of 3c (MSD-496486311) led to a 70% reduction in Foxp3-expressing regulatory T cells as observed through bioluminescence imaging with luciferin, consistent with the role of PI3K/AKT signaling in Treg cell proliferation. As a model for allergic rhinitis and asthma, treatment of ovalbumin-challenged Brown Norway rats with 0.3 to 30 mg/kg/day of 3c gave a dose-dependent reduction in pulmonary bronchoalveolar lavage inflammation eosinophil cell count.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/chemistry , Immunologic Factors/chemistry , Pyrrolidines/chemistry , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Binding Sites , Class I Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Dogs , Half-Life , Humans , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Lectins, C-Type/metabolism , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Proto-Oncogene Proteins c-akt/metabolism , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , Rats , Rats, Wistar , Rhinitis, Allergic/drug therapy , Signal Transduction/drug effects , Structure-Activity Relationship
5.
ACS Med Chem Lett ; 12(4): 653-661, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33859804

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1), a serine/threonine kinase, is a negative immune regulator of T cell receptor (TCR) and B cell signaling that is primarily expressed in hematopoietic cells. Accordingly, it has been reported that HPK1 loss-of-function in HPK1 kinase-dead syngeneic mouse models shows enhanced T cell signaling and cytokine production as well as tumor growth inhibition in vivo, supporting its value as an immunotherapeutic target. Herein, we present the structurally enabled discovery of novel, potent, and selective diaminopyrimidine carboxamide HPK1 inhibitors. The key discovery of a carboxamide moiety was essential for enhanced enzyme inhibitory potency and kinome selectivity as well as sustained elevation of cellular IL-2 production across a titration range in human peripheral blood mononuclear cells. The elucidation of structure-activity relationships using various pendant amino ring systems allowed for the identification of several small molecule type-I inhibitors with promising in vitro profiles.

6.
Bioorg Med Chem Lett ; 42: 128046, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33865969

ABSTRACT

PI3K-δ mediates key immune cell signaling pathways and is a target of interest for treatment of oncological and immunological disorders. Here we describe the discovery and optimization of a novel series of PI3K-δ selective inhibitors. We first identified hits containing an isoindolinone scaffold using a combined ligand- and receptor-based virtual screening workflow, and then improved potency and selectivity guided by structural data and modeling. Careful optimization of molecular properties led to compounds with improved permeability and pharmacokinetic profile, and high potency in a whole blood assay.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Drug Discovery , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phthalimides/pharmacology , Class I Phosphatidylinositol 3-Kinases/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phthalimides/chemical synthesis , Phthalimides/chemistry , Structure-Activity Relationship
7.
ACS Med Chem Lett ; 12(3): 459-466, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33738073

ABSTRACT

Hematopoietic progenitor kinase (HPK1), a negative regulator of TCR-mediated T-cell activation, has been recognized as a novel antitumor immunotherapy target. Structural optimization of kinase inhibitor 4 through a systematic two-dimensional diversity screen of pyrazolopyridines led to the identification of potent and selective compounds. Crystallographic studies with HPK1 revealed a favorable water-mediated interaction with Asp155 and a salt bridge to Asp101 with optimized heterocyclic solvent fronts that were critical for enhanced potency and selectivity. Computational studies of model systems revealed differences in torsional profiles that allowed for these beneficial protein-ligand interactions. Further optimization of molecular properties led to identification of potent and selective reverse indazole inhibitor 36 that inhibited phosphorylation of adaptor protein SLP76 in human PBMC and exhibited low clearance with notable bioavailability in in vivo rat studies.

8.
SLAS Discov ; 26(1): 88-99, 2021 01.
Article in English | MEDLINE | ID: mdl-32844715

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1), also referred to as mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1), is a serine/threonine kinase that negatively regulates T-cell signaling by phosphorylating Ser376 of Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76), a critical mediator of T-cell receptor activation. HPK1 loss of function mouse models demonstrated enhanced immune cell activation and beneficial antitumor activity. To enable discovery and functional characterization of high-affinity small-molecule HPK1 inhibitors, we have established high-throughput biochemical, cell-based, and novel pharmacodynamic (PD) assays. Kinase activity-based time-resolved fluorescence energy transfer (TR-FRET) assays were established as the primary biochemical approach to screen for potent inhibitors and assess selectivity against members of MAP4K and other closely related kinases. A proximal target engagement (TE) assay quantifying pSLP-76 levels as a readout and a distal assay measuring IL-2 secretion as a functional response were established using human peripheral blood mononuclear cells (PBMCs) from two healthy donors. Significant correlations between biochemical and cellular assays as well as excellent correlation between the two donors for the cellular assays were observed. pSLP-76 levels were further used as a PD marker in the preclinical murine model. This effort required the development of a novel ultrasensitive single-molecule array (SiMoA) assay to monitor pSLP-76 changes in mouse spleen.


Subject(s)
Drug Discovery/methods , High-Throughput Screening Assays/methods , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Animals , Cell Line , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mice , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
9.
ACS Med Chem Lett ; 11(12): 2461-2469, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33335668

ABSTRACT

The 3,3-disubstituted oxindole moiety is a versatile and rigid three-dimensionally shaped scaffold. When engineered with a purine hinge-binding core, exceptionally selective PI3Kδ kinase inhibitors were discovered by exploiting small differences in isoform selectivity pockets. Crystal structures of early lead 2f bound to PI3Kδ and PI3Kα helped rationalize the high selectivity observed with 2f. By attenuating the lypophilicity and metabolic liabilities of an oxindole moiety, we improved the preclinical species PK and solubility and reduced adenosine uptake activity. The excellent potency and kinome selectivity of 7-azaoxindole 4d and spirooxindole 5d, together with a low plasma clearance and good half-life in rat and dog, supported a low once-daily predicted human dose.

10.
PLoS One ; 15(12): e0243145, 2020.
Article in English | MEDLINE | ID: mdl-33270695

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-specific Ste20-related serine/threonine kinase, is a negative regulator of signal transduction in immune cells, including T cells, B cells, and dendritic cells (DCs). In mice, HPK1 deficiency subverts inhibition of the anti-tumor immune response and is associated with functional augmentation of anti-tumor T cells. We have used a potent, small molecule HPK1 inhibitor, Compound 1, to investigate the effects of pharmacological intervention of HPK1 kinase activity in immune cells. Compound 1 enhanced Th1 cytokine production in T cells and fully reverted immune suppression imposed by the prostaglandin E2 (PGE2) and adenosine pathways in human T cells. Moreover, the combination of Compound 1 with pembrolizumab, a humanized monoclonal antibody against the programmed cell death protein 1 (PD-1), demonstrated a synergistic effect, resulting in enhanced interferon (IFN)-γ production. Collectively, our results suggest that blocking HPK1 kinase activity with small molecule inhibitors alone or in combination with checkpoint blockade may be an attractive approach for the immunotherapy of cancer.


Subject(s)
Lymphocyte Activation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , T-Lymphocytes/drug effects , Animals , Cytokines/immunology , Female , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/immunology , T-Lymphocytes/immunology
12.
Bioorg Med Chem Lett ; 30(1): 126715, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31757666

ABSTRACT

A high-throughput screening (HTS) campaign identified a class of heteroaryl piperazines with excellent baseline affinity and selectivity for phosphoinositide 3-kinase δ (PI3Kδ) over closely related isoforms. Rapid evaluation and optimization of structure-activity relationships (SAR) for this class, leveraging the modular nature of this scaffold, facilitated development of this hit class into a series of potent and selective inhibitors of PI3Kδ. This effort culminated in the identification of 29, which displayed excellent potency in enzyme and cell-based assays, as well as favorable pharmacokinetic and off-target profiles.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , High-Throughput Screening Assays/methods , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Humans , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 29(18): 2575-2580, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31416665

ABSTRACT

PI3Kδ mediates key immune cell signaling pathways and is a target of interest for multiple indications in immunology and oncology. Here we report a structure-based scaffold-hopping strategy for the design of chemically diverse PI3Kδ inhibitors. Using this strategy, we identified several scaffolds that can be combined to generate new PI3Kδ inhibitors with high potency and isoform selectivity. In particular, an oxindole-based scaffold was found to impart exquisite selectivity when combined with several hinge binding motifs.


Subject(s)
Drug Design , Oxindoles/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Binding Sites/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Oxindoles/chemical synthesis , Oxindoles/chemistry , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Structure-Activity Relationship
14.
J Med Chem ; 62(9): 4370-4382, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30986068

ABSTRACT

PI3Kδ catalytic activity is required for immune cell activation, and has been implicated in inflammatory diseases as well as hematological malignancies in which the AKT pathway is overactive. A purine PI3Kδ inhibitor bearing a benzimidazolone-piperidine motif was found to be poorly tolerated in dog, which was attributed to diffuse vascular injury. Several strategies were implemented to mitigate this finding, including reconstruction of the benzimidazolone-piperidine selectivity motif. Structure-based design led to the identification of O- and N-linked heterocycloalkyls, with pyrrolidines being particularly ligand efficient and kinome selective, and having an improved safety pharmacology profile. A representative was advanced into a dog tolerability study where it was found to be well tolerated, with no histopathological evidence of vascular injury.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Pyrrolidines/pharmacology , Animals , Dogs , Drug Design , HeLa Cells , Humans , Male , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/toxicity , Purines/chemical synthesis , Purines/toxicity , Pyrrolidines/chemical synthesis , Pyrrolidines/toxicity , Rats, Wistar
15.
J Med Chem ; 59(13): 6501-11, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27329786

ABSTRACT

The ERK/MAPK pathway plays a central role in the regulation of critical cellular processes and is activated in more than 30% of human cancers. Specific BRAF and MEK inhibitors have shown clinical efficacy in patients for the treatment of BRAF-mutant melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the ERK signal pathway. Acquired resistance to these agents has led to greater interest in ERK, a downstream target of the MAPK pathway. De novo design efforts of a novel scaffold derived from SCH772984 by employing hydrogen bond interactions specific for ERK in the binding pocket identified 1-(1H-pyrazolo[4,3-c]pyridin-6-yl)ureas as a viable lead series. Sequential SAR studies led to the identification of highly potent and selective ERK inhibitors with low molecular weight and high LE. Compound 21 exhibited potent target engagement and strong tumor regression in the BRAF(V600E) xenograft model.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Urea/analogs & derivatives , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology
16.
Bioorg Med Chem Lett ; 25(17): 3495-500, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26142947

ABSTRACT

The triazolyl amide γ-secretase modulators are potent alternatives to the cinnamyl amides that have entered the clinic for the treatment of Alzheimer's disease. Herein we build on the lead benzoazepinones described in our prior communication with imidazomethoxyarene moiety alternatives that offer opportunities to fine tune physical properties as well as address hERG binding and PK. Both half-life and bioavailability were significantly improved, especially in dog, with robust brain Aß42 lowering maintained in both transgenic mouse and rat.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/pharmacokinetics , Animals , Biological Availability , Mice , Mice, Transgenic , Rats
17.
Bioorg Med Chem Lett ; 25(17): 3488-94, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26212776

ABSTRACT

Synthesis and SAR studies of novel triazolobenzazepinones as gamma secretase modulators (GSMs) are presented in this communication. Starting from our azepinone leads, optimization studies toward improving central lowering of Aß42 led to the discovery of novel benzo-fused azepinones. Several benzazepinones were profiled in vivo and found to lower brain Aß42 levels in Sprague Dawley rats and transgenic APP-YAC mice in a dose-dependent manner after a single oral dose. Compound 34 was further progressed into a pilot study in our cisterna-magna-ported rhesus monkey model, where we observed robust lowering of CSF Aß42 levels.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Drug Discovery , Macaca mulatta , Mice , Mice, Transgenic , Rats , Rats, Sprague-Dawley
18.
ACS Med Chem Lett ; 5(4): 340-5, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24900838

ABSTRACT

The identification and in vitro and in vivo characterization of a potent SHI-1:2 are described. Kinetic analysis indicated that biaryl inhibitors exhibit slow binding kinetics in isolated HDAC1 and HDAC2 preparations. Delayed histone hyperacetylation and gene expression changes were also observed in cell culture, and histone acetylation was observed in vivo beyond disappearance of drug from plasma. In vivo studies further demonstrated that continuous target inhibition was well tolerated and efficacious in tumor-bearing mice, leading to tumor growth inhibition with either once-daily or intermittent administration.

19.
Mol Cancer Ther ; 12(12): 2709-21, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24092806

ABSTRACT

Histone deacetylase inhibitors (HDACi) are anticancer agents that induce hyperacetylation of histones, resulting in chromatin remodeling and transcriptional changes. In addition, nonhistone proteins, such as the chaperone protein Hsp90, are functionally regulated through hyperacetylation mediated by HDACis. Histone acetylation is thought to be primarily regulated by HDACs 1, 2, and 3, whereas the acetylation of Hsp90 has been proposed to be specifically regulated through HDAC6. We compared the molecular and biologic effects induced by an HDACi with broad HDAC specificity (vorinostat) with agents that predominantly inhibited selected class I HDACs (MRLB-223 and romidepsin). MRLB-223, a potent inhibitor of HDACs 1 and 2, killed tumor cells using the same apoptotic pathways as the HDAC 1, 2, 3, 6, and 8 inhibitor vorinostat. However, vorinostat induced histone hyperacetylation and killed tumor cells more rapidly than MRLB-223 and had greater therapeutic efficacy in vivo. FDCP-1 cells dependent on the Hsp90 client protein Bcr-Abl for survival, were killed by all HDACis tested, concomitant with caspase-dependent degradation of Bcr-Abl. These studies provide evidence that inhibition of HDAC6 and degradation of Bcr-Abl following hyperacetylation of Hsp90 is likely not a major mechanism of action of HDACis as had been previously posited.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Acetylation/drug effects , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Enzyme Activation/drug effects , Fusion Proteins, bcr-abl/metabolism , HSP90 Heat-Shock Proteins/metabolism , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/pharmacology , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/mortality , Lymphoma/pathology , Mice , Vorinostat , Xenograft Model Antitumor Assays
20.
Bioorg Med Chem Lett ; 22(9): 3140-6, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22497762

ABSTRACT

Synthesis and SAR studies of novel aryl triazoles as gamma secretase modulators (GSMs) are presented in this communication. Starting from our aryl triazole leads, optimization studies were continued and the series progressed towards novel amides and lactams. Triazole 57 was identified as the most potent analog in this series, displaying single-digit nanomolar Aß42 IC(50) in cell-based assays and reduced affinity for the hERG channel.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Trans-Activators/metabolism , Triazoles/pharmacology , Amides/chemistry , Amides/pharmacology , Amyloid beta-Peptides , Cell Line , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Lactams , Structure-Activity Relationship , Transcriptional Regulator ERG , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...