Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 85(15): 9447-9453, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32559382

ABSTRACT

A high-throughput screening approach for simultaneous analysis and quantification of the percent conversion of up to 48 reactions has been developed using a thin-layer chromatography (TLC) imaging method. As a test-bed reaction, we monitored 48 thiol conjugate additions to a Meldrum's acid derivative (1) in parallel using TLC. The TLC elutions were imaged using a cell phone and a LEGO brick-constructed UV/vis light box. Further, a spotting device was constructed from LEGO bricks that allows simple transfer of the samples from a well-plate to the TLC plate. Using software that was developed to detect "blobs" and report their intensity, we were able to quantitatively determine the extent of completion of the 48 reactions with one analysis.


Subject(s)
Ultraviolet Rays , Chromatography, Thin Layer
2.
Chem ; 6(3): 703-724, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32201749

ABSTRACT

The complex etiology of neurodegeneration continues to stifle efforts to develop effective therapeutics. New agents elucidating key pathways causing neurodegeneration might serve to increase our understanding and potentially lead to improved treatments. Here, we demonstrate that a water-soluble manganese(II) texaphyrin (MMn) is a suitable magnetic resonance imaging (MRI) contrast agent for detecting larger amyloid beta constructs. The imaging potential of MMn was inferred on the basis of in vitro studies and in vivo detection in Alzheimer's disease C. elegans models via MRI and ICP-MS. In vitro antioxidant- and cellular-based assays provide support for the notion that this porphyrin analog shows promise as a therapeutic agent able to mitigate the oxidative and nitrative toxic effects considered causal in neurodegeneration. The present report marks the first elaboration of an MRI-active metalloantioxidant that confers diagnostic and therapeutic benefit in Alzheimer's disease models without conjugation of a radioisotope, targeting moiety, or therapeutic payload.

3.
Nat Chem ; 11(9): 768-778, 2019 09.
Article in English | MEDLINE | ID: mdl-31444486

ABSTRACT

ortho-Aminomethylphenylboronic acids are used in receptors for carbohydrates and various other compounds containing vicinal diols. The presence of the o-aminomethyl group enhances the affinity towards diols at neutral pH, and the manner in which this group plays this role has been a topic of debate. Further, the aminomethyl group is believed to be involved in the turn-on of the emission properties of appended fluorophores upon diol binding. In this treatise, a uniform picture emerges for the role of this group: it primarily acts as an electron-withdrawing group that lowers the pKa of the neighbouring boronic acid thereby facilitating diol binding at neutral pH. The amine appears to play no role in the modulation of the fluorescence of appended fluorophores in the protic-solvent-inserted form of the boronic acid/boronate ester. Instead, fluorescence turn-on can be consistently tied to vibrational-coupled excited-state relaxation (a loose-bolt effect). Overall, this Review unifies and discusses the existing data as of 2019 whilst also highlighting why o-aminomethyl groups are so widely used, and the role they play in carbohydrate sensing using phenylboronic acids.

4.
ACS Cent Sci ; 4(7): 854-861, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-30062113

ABSTRACT

Photography was employed for the quantitation and differentiation of G- and V-series nerve agent mimics with the use of self-propagating cascades. Fluoride anion and thiols, released from a G-nerve agent mimic (i.e., diisopropyl fluorophosphate) and a V-nerve agent mimic (i.e., demeton-S-methyl), respectively, were used to initiate self-propagating cascades that amplify fluorescence signals exponentially in a ratiometric manner. A homemade LEGO dark-box, a cell phone, and 96-well plates were employed to collect photographs of the fluorescence response to the analytes. The photographic images were digitally processed in the 1931 xyY color space using a watershed and morphological erosion algorithm to generate chromaticity vs concentration calibration curves. We show that the two different amplification routines are selective for their analyte class and thus successfully discriminated the G- and V-series nerve agent mimics. Further, accurate concentrations of the analytes are determined using the chromaticity and LEGO approach given herein, thus demonstrating a simple and on-site constructible/portable device for use in the field.

5.
J Am Chem Soc ; 139(15): 5568-5578, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28358506

ABSTRACT

ortho-Aminomethylphenylboronic acid-based receptors with appended fluorophores are commonly used as molecular sensors for saccharides in aqueous media. The mechanism for fluorescence modulation in these sensors has been attributed to some form of photoinduced electron transfer (PET) quenching, which is diminished in the presence of saccharides. Using a well-known boronic acid-based saccharide sensor (3), this work reveals a new mechanism for fluorescence turn-on in these types of sensors. Compound 3 exhibits an excimer, and the associated ground-state aggregation is responsible for fluorescence modulation under certain conditions. When fructose was titrated into a solution of 3 in 2:1 water/methanol with NaCl, the fluorescence intensity increased. Yet, when the same titration was repeated in pure methanol, a solvent in which the sensor does not aggregate, no fluorescence response to fructose was observed. This reveals that the fluorescence increase is not fully associated with fructose binding, but instead disaggregation of the sensor in the presence of fructose. Further, an analogue of the sensor that does not contain a boronic acid (4) responded nearly identically to 3 in the presence of fructose, despite having no functional group with which to bind the saccharide. This further supports the claim that fluorescence modulation is not primarily a result of binding, but of disaggregation. Using an indicator displacement assay and isothermal titration calorimetry, it was confirmed that fructose does indeed bind to the sensor. Thus, our evidence reveals that while binding occurs with fructose in the aqueous solvent system used, it is not related to the majority of the fluorescence modulation. Instead, disaggregation dominates the signal turn-on, and is thus a mechanism that should be investigated in other ortho-aminomethylphenylboronic acid-based sensors.


Subject(s)
Carbohydrates/analysis , Fluorescence , Methylamines/chemistry , Electron Transport , Methanol/chemistry , Models, Molecular , Molecular Structure , Photochemical Processes , Sodium Chloride/chemistry , Spectrometry, Fluorescence , Water/chemistry
6.
J Org Chem ; 81(18): 8319-30, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27588921

ABSTRACT

Structural studies of a three-component assembly-a host and two distinct guests-were carried out using a combination of (11)B and (1)H NMR. In aprotic solvent, the imino group that forms ortho to the boronic acid or boronate ester group can form a dative N-B bond. In protic solvent, a molecule of solvent inserts between the nitrogen and boron atoms, partially ionizing the solvent molecule. Additionally, (11)B NMR was used in combination with a seventh-order polynomial to calculate five binding constants for each of the individual steps in protic solvent. Comparison of these binding constants was used to establish positive cooperativity in the binding of the two guests.

7.
Angew Chem Int Ed Engl ; 53(32): 8467-70, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-24939397

ABSTRACT

Asymmetric hydrogenation of unprotected NH imines catalyzed by rhodium/bis(phosphine)-thiourea provided chiral amines with up to 97% yield and 95% ee. (1)H NMR studies, coupled with control experiments, implied that catalytic chloride-bound intermediates were involved in the mechanism through a dual hydrogen-bonding interaction. Deuteration experiments proved that the hydrogenation proceeded through a pathway consistent with an imine.


Subject(s)
Imines/chemistry , Rhodium/chemistry , Thiourea/chemistry , Catalysis , Hydrogenation , Stereoisomerism
8.
Supramol Chem ; 25(2): 79-86, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23441105

ABSTRACT

The role of the ortho-aminomethyl functional group in phenyl boronic acids for sugar complexation is a topic of debate. To decipher its effect on the kinetics of boronate ester formation, we first performed pseudo-first order kinetics analyses at five pH values up to 4 mM in fructose, revealing a first-order kinetic dependence upon fructose. Under these conditions, the reaction is in equilibrium and does not reach completion, but at 50 mM fructose saturation is achieved revealing zero-order dependence upon fructose. This indicates rate-determining creation of an intermediate prior to reaction with fructose, which we propose involves leaving group departure of inserted solvent. Further, the region of kinetics displaying zero-order dependence has a kinetic isotope effect (KIE) of 1.42, showing involvement of a proton transfer in the leaving group departure. The ratio of forward and reverse rate constants branching from the intermediate shows that fructose is several thousand times more nucleophilic than the solvent. Overall, the data supports a mechanism where the o-aminomethyl group lowers the pK(a) of the proximal boronic acid and acts as a general-acid (as an ammonium) to facilitate leaving group departure. Consequently, by microscopic reversibility the resulting amine must perform general-base catalysis to deliver fructose.

SELECTION OF CITATIONS
SEARCH DETAIL
...