Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 8(1): 200, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349102

ABSTRACT

Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.

2.
Sci Rep ; 5: 18666, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26690504

ABSTRACT

Increases in terrestrially-derived dissolved organic matter (DOM) have led to the browning of inland waters across regions of northeastern North America and Europe. Short-term experimental and comparative studies highlight the important ecological consequences of browning. These range from transparency-induced increases in thermal stratification and oxygen (O2) depletion to changes in pelagic food web structure and alteration of the important role of inland waters in the global carbon cycle. However, multi-decadal studies that document the net ecological consequences of long-term browning are lacking. Here we show that browning over a 27 year period in two lakes of differing transparency resulted in fundamental changes in vertical habitat gradients and food web structure, and that these responses were stronger in the more transparent lake. Surface water temperatures increased by 2-3 °C in both lakes in the absence of any changes in air temperature. Water transparency to ultraviolet (UV) radiation showed a fivefold decrease in the more transparent lake. The primary zooplankton grazers decreased, and in the more transparent lake were largely replaced by a two trophic level zooplankton community. These findings provide new insights into the net effects of the complex and contrasting mechanisms that underlie the ecosystem consequences of browning.


Subject(s)
Ecosystem , Lakes , Water Pollution/analysis , Air , Animals , Photosynthesis , Seasons , Temperature , Time Factors , Ultraviolet Rays , Water , Wind , Zooplankton/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...