Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3468, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34103498

ABSTRACT

Cavitation bubbles can be seeded from a plasma following optical breakdown, by focusing an intense laser in water. The fast dynamics are associated with extreme states of gas and liquid, especially in the nascent state. This offers a unique setting to probe water and water vapor far-from equilibrium. However, current optical techniques cannot quantify these early states due to contrast and resolution limitations. X-ray holography with single X-ray free-electron laser pulses has now enabled a quasi-instantaneous high resolution structural probe with contrast proportional to the electron density of the object. In this work, we demonstrate cone-beam holographic flash imaging of laser-induced cavitation bubbles in water with nanofocused X-ray free-electron laser pulses. We quantify the spatial and temporal pressure distribution of the shockwave surrounding the expanding cavitation bubble at time delays shortly after seeding and compare the results to numerical simulations.

2.
Chaos ; 30(7): 073123, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32752633

ABSTRACT

A feedforward control technique is presented to steer a harmonically driven, non-linear system between attractors in the frequency-amplitude parameter plane of the excitation. The basis of the technique is the temporary addition of a second harmonic component to the driving. To illustrate this approach, it is applied to the Keller-Miksis equation describing the radial dynamics of a single spherical gas bubble placed in an infinite domain of liquid. This model is a second-order, non-linear ordinary differential equation, a non-linear oscillator. With a proper selection of the frequency ratio of the temporary dual-frequency driving and with the appropriate tuning of the excitation amplitudes, the trajectory of the system can be smoothly transformed between specific attractors; for instance, between period-3 and period-5 orbits. The transformation possibilities are discussed and summarized for attractors originating from the subharmonic resonances and the equilibrium state (absence of external driving) of the system.

3.
Phys Rev Lett ; 99(4): 045701, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17678374

ABSTRACT

Ice crystallization in supercooled water has been initiated by focused Nd:YAG laser pulses at 1064 nm wavelength. The pulses of 8 ns duration and up to 2 mJ energy produce a bubble in the supercooled liquid after optical breakdown and plasma formation. The subsequent collapse and disintegration of the bubble into fragments was observed to be followed by ice crystal nucleation in many, but not all cases. Details of the crystallization events have been investigated by high-speed imaging, and nucleation statistics and crystal growth rates are given. It is argued that homogeneous nucleation in the compressed liquid phase is a plausible explanation of the effect.

4.
Ultrason Sonochem ; 11(3-4): 119-23, 2004 May.
Article in English | MEDLINE | ID: mdl-15081967

ABSTRACT

Cleaning and erosion of objects by ultrasound in liquids are caused by the action of acoustic cavitation bubbles. Experiments have been performed with respect to the erosive effect of multibubble structures on painted glass surfaces and on aluminium foils in an ultrasonic standing wave field at 40 kHz. High-speed imaging techniques have been employed to investigate the mechanisms at work, in particular bubble interaction and cluster formation near and at the object surfaces. It was found that different prototype bubble structures can contribute to the erosion process. Some are bound to the surface, which seems to act as a bubble source in this case, while others also exist independently from the object. Cleaning and erosion effects at the pressure antinodes can vary strongly as they depend on the emerging bubble structures. These, in turn, seem to be substantially influenced by properties and the history of the surface.

5.
Ultrason Sonochem ; 11(1): 39-42, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14624986

ABSTRACT

Filamentary formations of acoustic cavitation bubbles in an ultrasonic resonator are recorded by high-speed stereoscopic means. The bubble locations and motions are reconstructed in three dimensions, and a velocity distribution of bubbles is obtained. Experimental bubble trajectories are compared to a one-to-one simulation by a particle modeling approach which shows reasonable agreement. Such investigations are important for a better understanding of the mechanisms taking place in applications of intense ultrasound in liquids, and for verification and improvement of particle modeling of cavitation bubbles.

6.
Ultrason Sonochem ; 8(3): 159-62, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11441593

ABSTRACT

Acoustically induced cavitation at 20 kHz is observed by means of high speed CCD recording at a frame-rate of 2250 per second. Using digital image processing the bubbles' trajectories are reconstructed. The experimental data reveal that collision and coalescence of bubbles is a predominant phenomenon that limits their individual lifetime. Measurements of bubble sizes and velocities are in agreement with previous results.

7.
Ultrason Sonochem ; 6(1-2): 25-9, 1999 Mar.
Article in English | MEDLINE | ID: mdl-11233935

ABSTRACT

Cavitation bubbles in acoustic resonators are observed to arrange in branch-like patterns. We give a brief review of the anatomy of such structures and outline an approach for simulation by individual, moving bubbles. This particle model can reproduce an experimentally observed transition between different structure types in a rectangular resonator cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...