Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 29812, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27443506

ABSTRACT

The striatum controls multiple cognitive aspects including motivation, reward perception, decision-making and motor planning. In particular, the dorsolateral striatum contributes to motor learning. Here we define an approach for investigating synaptic plasticity in mouse dorsolateral cortico-striatal circuitry and interrogate the relative contributions of neurotransmitter receptors and intracellular signaling components. Consistent with previous studies, we show that long-term potentiation (LTP) in cortico-striatal circuitry is facilitated by dopamine, and requires activation of D1-dopamine receptors, as well as NMDA receptors (NMDAR) and their calcium-dependent downstream effectors, including CaMKII. Moreover, we assessed the contribution of the protein kinase Cdk5, a key neuronal signaling molecule, in cortico-striatal LTP. Pharmacological Cdk5 inhibition, brain-wide Cdk5 conditional knockout, or viral-mediated dorsolateral striatal-specific loss of Cdk5 all impaired dopamine-facilitated LTP or D1-dopamine receptor-facilitated LTP. Selective loss of Cdk5 in dorsolateral striatum increased locomotor activity and attenuated motor learning. Taken together, we report an approach for studying synaptic plasticity in mouse dorsolateral striatum and critically implicate D1-dopamine receptor, NMDAR, Cdk5, and CaMKII in cortico-striatal plasticity. Furthermore, we associate striatal plasticity deficits with effects upon behaviors mediated by this circuitry. This approach should prove useful for the study of the molecular basis of plasticity in the dorsolateral striatum.


Subject(s)
Corpus Striatum/enzymology , Cyclin-Dependent Kinase 5/metabolism , Learning/physiology , Locomotion/physiology , Long-Term Potentiation/physiology , Synaptic Transmission/physiology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Dopamine/pharmacology , Learning/drug effects , Locomotion/drug effects , Long-Term Potentiation/drug effects , Male , Mice , Receptors, Dopamine D1/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/drug effects
2.
J Neurosci ; 36(13): 3709-21, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-27030757

ABSTRACT

Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. SIGNIFICANCE STATEMENT: The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to sleep function.


Subject(s)
Adenosine/metabolism , Homeostasis/physiology , Nerve Net/physiology , Neuroglia/physiology , Neurons/physiology , Sleep/physiology , Action Potentials/drug effects , Action Potentials/genetics , Adenosine Kinase/genetics , Adenosine Kinase/immunology , Adenosine Kinase/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Estrogen Antagonists/pharmacology , Hippocampus/cytology , Hippocampus/physiology , Homeostasis/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Receptor, Adenosine A1/genetics , Receptor, Adenosine A1/metabolism , Sleep/genetics , Tamoxifen/pharmacology , Time Factors
3.
J Biomech ; 47(1): 162-7, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24157062

ABSTRACT

Exercise in general, and mechanical signals in particular, help ameliorate the neuromuscular symptoms of aging and possibly other neurodegenerative disorders by enhancing muscle function. To better understand the salutary mechanisms of such physical stimuli, we evaluated the potential for low intensity mechanical signals to promote enhanced muscle dynamics. The effects of daily brief periods of low intensity vibration (LIV) on neuromuscular functions and behavioral correlates were assessed in mice. Physiological analysis revealed that LIV increased isometric force production in semitendinosus skeletal muscle. This effect was evident in both young and old mice. Isometric force recordings also showed that LIV reduced the fatiguing effects of intensive synaptic muscle stimulation. Furthermore, LIV increased evoked neurotransmitter release at neuromuscular synapses but had no effect on spontaneous end plate potential amplitude or frequency. In behavioral studies, LIV increased mouse grip strength and potentiated initial motor activity in a novel environment. These results provide evidence for the efficacy of LIV in producing changes in the neuromuscular system that translate into performance gains at a behavioral scale.


Subject(s)
Muscle, Skeletal/physiology , Synaptic Transmission , Aging/physiology , Animals , Electromyography , Electrophysiology , Male , Mice , Mice, Inbred C57BL , Motor Activity , Muscle Fatigue , Muscle Strength , Neuromuscular Junction/pathology , Vibration
4.
Cancer Cell ; 24(4): 499-511, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-24135281

ABSTRACT

Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer that originates from calcitonin-secreting parafollicular cells, or C cells. We found that Cdk5 and its cofactors p35 and p25 are highly expressed in human MTC and that Cdk5 activity promotes MTC proliferation. A conditional MTC mouse model was generated and corroborated the role of aberrant Cdk5 activation in MTC. C cell-specific overexpression of p25 caused rapid C cell hyperplasia leading to lethal MTC, which was arrested by repressing p25 overexpression. A comparative phosphoproteomic screen between proliferating and arrested MTC identified the retinoblastoma protein (Rb) as a crucial Cdk5 downstream target. Prevention of Rb phosphorylation at Ser807/Ser811 attenuated MTC proliferation. These findings implicate Cdk5 signaling via Rb as critical to MTC tumorigenesis and progression.


Subject(s)
Carcinoma, Medullary/metabolism , Carcinoma, Neuroendocrine/metabolism , Cyclin-Dependent Kinase 5/metabolism , Gene Expression Regulation, Neoplastic , Thyroid Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Disease Progression , Humans , Mice , Mice, Transgenic , Phosphorylation , Retinoblastoma Protein/metabolism , Signal Transduction , Time Factors , Transgenes
5.
Biol Psychiatry ; 68(12): 1163-71, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20832057

ABSTRACT

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) may result from delayed establishment of corticolimbic circuitry or perturbed dopamine (DA) neurotransmission. Despite the widespread use of stimulants to treat ADHD, little is known regarding their long-term effects on neurotransmitter levels and metabolism. Cyclin-dependent kinase 5 (Cdk5) regulates DA signaling through control of synthesis, postsynaptic responses, and vesicle release. Mice lacking the Cdk5-activating cofactor p35 are deficient in cortical lamination, suggesting altered motor/reward circuitry. METHODS: We employed mice lacking p35 to study the effect of altered circuitry in vivo. Positron emission tomography measured glucose metabolism in the cerebral cortex using 2-deoxy-2-[¹8F] fluoro-d-glucose as the radiotracer. Retrograde dye tracing and tyrosine hydroxylase immunostains assessed the effect of p35 knockout on the medial prefrontal cortex (PFC), especially in relation to mesolimbic circuit formation. We defined the influence of Cdk5/p35 activity on catecholaminergic neurotransmission and motor activity via examination of locomotor responses to psychostimulants, monoamine neurotransmitter levels, and DA signal transduction. RESULTS: Here, we report that mice deficient in p35 display increased glucose uptake in the cerebral cortex, basal hyperactivity, and paradoxical decreased locomotion in response to chronic injection of cocaine or methylphenidate. Knockout mice also exhibited an increased susceptibility to changes in PFC neurotransmitter content after chronic methylphenidate exposure and altered basal DAergic activity in acute striatal and PFC slices. CONCLUSIONS: Our findings suggest that dysregulation of Cdk5/p35 activity during development may contribute to ADHD pathology, as indicated by the behavioral phenotype, improperly established mesolimbic circuitry, and aberrations in striatal and PFC catecholaminergic signaling in p35 knockout mice.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Brain/metabolism , Brain/pathology , Phosphotransferases/genetics , Animals , Atrophy/genetics , Attention Deficit Disorder with Hyperactivity/metabolism , Attention Deficit Disorder with Hyperactivity/pathology , Disease Models, Animal , Dopamine/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Fluorodeoxyglucose F18/metabolism , Male , Methylphenidate/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Motor Activity/genetics , Neural Pathways/pathology , Phenotype , Positron-Emission Tomography/methods , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Receptors, AMPA/metabolism , Serotonin/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...