Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Cell Rep ; 42(10): 113280, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37851577

ABSTRACT

Increased nucleolar size and activity correlate with aberrant ribosome biogenesis and enhanced translation in cancer cells. One of the first and rate-limiting steps in translation is the interaction of the 40S small ribosome subunit with mRNAs. Here, we report the identification of the zinc finger protein 692 (ZNF692), a MYC-induced nucleolar scaffold that coordinates the final steps in the biogenesis of the small ribosome subunit. ZNF692 forms a hub containing the exosome complex and ribosome biogenesis factors specialized in the final steps of 18S rRNA processing and 40S ribosome maturation in the granular component of the nucleolus. Highly proliferative cells are more reliant on ZNF692 than normal cells; thus, we conclude that effective production of small ribosome subunits is critical for translation efficiency in cancer cells.


Subject(s)
DNA-Binding Proteins , Protein Biosynthesis , Ribosomal Proteins , Ribosome Subunits, Small, Eukaryotic , Transcription Factors , Cell Nucleolus/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosomes/metabolism , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism , Humans , Animals , Rats , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Brain Commun ; 5(4): fcad218, 2023.
Article in English | MEDLINE | ID: mdl-37601407

ABSTRACT

Multiple sclerosis is an inflammatory degenerative condition of the central nervous system that may result in debilitating disability. Several studies over the past twenty years suggest that multiple sclerosis manifests with a rapid, more disabling disease course among individuals identifying with Black or Latin American ethnicity relative to those of White ethnicity. However, very little is known about immunologic underpinnings that may contribute to this ethnicity-associated discordant clinical severity. Given the importance of B cells to multiple sclerosis pathophysiology, and prior work showing increased antibody levels in the cerebrospinal fluid of Black-identifying, compared to White-identifying multiple sclerosis patients, we conducted a cohort study to determine B cell subset dynamics according to both self-reported ethnicity and genetic ancestry over time. Further, we determined relationships between ethnicity, ancestry, and neuron-binding IgG levels. We found significant associations between Black ethnicity and elevated frequencies of class-switched B cell subsets, including memory B cells; double negative two B cells; and antibody-secreting cells. The frequencies of these subsets positively correlated with West African genetic ancestry. We also observed significant associations between Black ethnicity and increased IgG binding to neurons. Our data suggests significantly heightened T cell-dependent B cell responses exhibiting increased titres of neuron-binding antibodies among individuals with multiple sclerosis identifying with the Black African diaspora. Factors driving this immunobiology may promote the greater demyelination, central nervous system atrophy and disability more often experienced by Black-, and Latin American-identifying individuals with multiple sclerosis.

3.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577632

ABSTRACT

Clathrin-mediated endocytosis (CME), the major cellular entry pathway, starts when clathrin assembles on the plasma membrane into clathrin-coated pits (CCPs). Two populations of CCPs are detected within the same cell: 'productive' CCPs that invaginate and pinch off, forming clathrin-coated vesicles (CCVs) [1, 2], and 'abortive' CCPs [3, 4, 5] that prematurely disassemble. The mechanisms of gating between these two populations and their relations to the functions of dozens of early-acting endocytic accessory proteins (EAPs) [5, 6, 7, 8, 9] have remained elusive. Here, we use experimentally-guided modeling to integrate the clathrin machinery and membrane mechanics in a single dynamical system. We show that the split between the two populations is an emergent property of this system, in which a switch between an Open state and a Closed state follows from the competition between the chemical energy of the clathrin basket and the mechanical energy of membrane bending. In silico experiments revealed an abrupt transition between the two states that acutely depends on the strength of the clathrin basket. This critical strength is lowered by membrane-bending EAPs [10, 11, 12]. Thus, CME is poised to be shifted between abortive and productive events by small changes in membrane curvature and/or coat stability. This model clarifies the workings of a putative endocytic checkpoint whose existence was previously proposed based on statistical analyses of the lifetime distributions of CCPs [4, 13]. Overall, a mechanistic framework is established to elucidate the diverse and redundant functions of EAPs in regulating CME progression.

4.
Nat Commun ; 14(1): 2610, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147288

ABSTRACT

Severe COVID-19 is characterized by an increase in the number and changes in the function of innate immune cells including neutrophils. However, it is not known how the metabolome of immune cells changes in patients with COVID-19. To address these questions, we analyzed the metabolome of neutrophils from patients with severe or mild COVID-19 and healthy controls. We identified widespread dysregulation of neutrophil metabolism with disease progression including in amino acid, redox, and central carbon metabolism. Metabolic changes in neutrophils from patients with severe COVID-19 were consistent with reduced activity of the glycolytic enzyme GAPDH. Inhibition of GAPDH blocked glycolysis and promoted pentose phosphate pathway activity but blunted the neutrophil respiratory burst. Inhibition of GAPDH was sufficient to cause neutrophil extracellular trap (NET) formation which required neutrophil elastase activity. GAPDH inhibition increased neutrophil pH, and blocking this increase prevented cell death and NET formation. These findings indicate that neutrophils in severe COVID-19 have an aberrant metabolism which can contribute to their dysfunction. Our work also shows that NET formation, a pathogenic feature of many inflammatory diseases, is actively suppressed in neutrophils by a cell-intrinsic mechanism controlled by GAPDH.


Subject(s)
COVID-19 , Extracellular Traps , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) , Humans , COVID-19/metabolism , Extracellular Traps/metabolism , Metabolome , Metabolomics , Neutrophils , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism
5.
Sci Adv ; 9(13): eadg1123, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37000871

ABSTRACT

Biomolecular condensates participate in the regulation of gene transcription, yet the relationship between nuclear condensation and transcriptional activation remains elusive. Here, we devised a biotinylated CRISPR-dCas9-based optogenetic method, light-activated macromolecular phase separation (LAMPS), to enable inducible formation, affinity purification, and multiomic dissection of nuclear condensates at the targeted genomic loci. LAMPS-induced condensation at enhancers and promoters activates endogenous gene transcription by chromatin reconfiguration, causing increased chromatin accessibility and de novo formation of long-range chromosomal loops. Proteomic profiling of light-induced condensates by dCas9-mediated affinity purification uncovers multivalent interaction-dependent remodeling of macromolecular composition, resulting in the selective enrichment of transcriptional coactivators and chromatin structure proteins. Our findings support a model whereby the formation of nuclear condensates at native genomic loci reconfigures chromatin architecture and multiprotein assemblies to modulate gene transcription. Hence, LAMPS facilitates mechanistic interrogation of the relationship between nuclear condensation, genome structure, and gene transcription in living cells.


Subject(s)
Chromatin , Proteomics , Chromatin/genetics , Cell Nucleus/genetics , Transcription Factors/genetics , Genome
6.
Nat Commun ; 13(1): 2422, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35504916

ABSTRACT

Chronic kidney diseases and acute kidney injury are mechanistically distinct kidney diseases. While chronic kidney diseases are associated with podocyte injury, acute kidney injury affects renal tubular epithelial cells. Despite these differences, a cardinal feature of both acute and chronic kidney diseases is dysregulated actin cytoskeleton. We have shown that pharmacological activation of GTPase dynamin ameliorates podocyte injury in murine models of chronic kidney diseases by promoting actin polymerization. Here we establish dynamin's role in modulating stiffness and polarity of renal tubular epithelial cells by crosslinking actin filaments into branched networks. Activation of dynamin's crosslinking capability by a small molecule agonist stabilizes the actomyosin cortex of the apical membrane against injury, which in turn preserves renal function in various murine models of acute kidney injury. Notably, a dynamin agonist simultaneously attenuates podocyte and tubular injury in the genetic murine model of Alport syndrome. Our study provides evidence for the feasibility and highlights the benefits of novel holistic nephron-protective therapies.


Subject(s)
Acute Kidney Injury , Podocytes , Renal Insufficiency, Chronic , Actin Cytoskeleton , Acute Kidney Injury/prevention & control , Animals , Dynamins , Female , Humans , Kidney/physiology , Male , Mice , Renal Insufficiency, Chronic/drug therapy
7.
Proc Natl Acad Sci U S A ; 117(50): 31591-31602, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33257546

ABSTRACT

Clathrin-mediated endocytosis (CME) begins with the nucleation of clathrin assembly on the plasma membrane, followed by stabilization and growth/maturation of clathrin-coated pits (CCPs) that eventually pinch off and internalize as clathrin-coated vesicles. This highly regulated process involves a myriad of endocytic accessory proteins (EAPs), many of which are multidomain proteins that encode a wide range of biochemical activities. Although domain-specific activities of EAPs have been extensively studied, their precise stage-specific functions have been identified in only a few cases. Using single-guide RNA (sgRNA)/dCas9 and small interfering RNA (siRNA)-mediated protein knockdown, combined with an image-based analysis pipeline, we have determined the phenotypic signature of 67 EAPs throughout the maturation process of CCPs. Based on these data, we show that EAPs can be partitioned into phenotypic clusters, which differentially affect CCP maturation and dynamics. Importantly, these clusters do not correlate with functional modules based on biochemical activities. Furthermore, we discover a critical role for SNARE proteins and their adaptors during early stages of CCP nucleation and stabilization and highlight the importance of GAK throughout CCP maturation that is consistent with GAK's multifunctional domain architecture. Together, these findings provide systematic, mechanistic insights into the plasticity and robustness of CME.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Cell Membrane/metabolism , Clathrin/metabolism , Coated Pits, Cell-Membrane/metabolism , Endocytosis/physiology , Adaptor Proteins, Vesicular Transport/genetics , CRISPR-Cas Systems/genetics , Cell Line , Cluster Analysis , Gene Knockdown Techniques , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Humans , Intravital Microscopy/methods , Luminescent Agents/chemistry , Microscopy, Fluorescence/methods , Molecular Imaging/methods , RNA, Small Interfering/metabolism
8.
Cancer Prev Res (Phila) ; 13(11): 911-922, 2020 11.
Article in English | MEDLINE | ID: mdl-32839204

ABSTRACT

Cirrhosis is a high-risk state for hepatocellular carcinoma (HCC) development and represents an opportunity to prevent cancer. In the precancerous state of cirrhosis, there is an accumulation of neoantigens that may be specifically targetable through immunotherapy. We asked whether immune checkpoint inhibition could prevent tumorigenesis in a mouse model of diethylnitrosamine and carbon tetrachloride-induced HCC. We found that initiation of anti-PD-1 therapy prior to tumorigenesis could prevent up to 46% of liver tumors. This significant reduction in tumor burden was accompanied by infiltration of CD4+ Th cells and CD8+ cytotoxic T cells into the liver parenchyma. Importantly, anti-PD-1 therapy did not exacerbate liver dysfunction or worsen overall health in this liver disease model. Given the safety and preservation of quality of life observed with long-term immunotherapy use, an immunotherapy chemoprevention strategy is likely associated with a low risk-to-benefit ratio and high value care in select patients. These results encourage a prevention trial in cirrhotic patients with the highest risk of developing HCC.See related Spotlight by Mohammed et al., p. 897.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/prevention & control , Humans , Immune Checkpoint Inhibitors , Liver Neoplasms/prevention & control , Mice , Programmed Cell Death 1 Receptor , Quality of Life
9.
Traffic ; 21(9): 603-616, 2020 09.
Article in English | MEDLINE | ID: mdl-32657003

ABSTRACT

Clathrin mediated endocytosis (CME) has been extensively studied in living cells by quantitative total internal reflection fluorescence microscopy (TIRFM). Fluorescent protein fusions to subunits of the major coat proteins, clathrin light chains or the heterotetrameric adaptor protein (AP2) complexes, have been used as fiduciary markers of clathrin coated pits (CCPs). However, the functionality of these fusion proteins has not been rigorously compared. Here, we generated stable cells lines overexpressing mRuby-CLCa and/or µ2-eGFP, σ2-eGFP, two markers currently in use, or a novel marker generated by inserting eGFP into the unstructured hinge region of the α subunit (α-eGFP). Using biochemical and TIRFM-based assays, we compared the functionality of the AP2 markers. All of the eGFP-tagged subunits were efficiently incorporated into AP2 and displayed greater accuracy in image-based CCP analyses than mRuby-CLCa. However, overexpression of either µ2-eGFP or σ2-eGFP impaired transferrin receptor uptake. In addition, µ2-eGFP reduced the rates of CCP initiation and σ2-eGFP perturbed AP2 incorporation into CCPs and CCP maturation. In contrast, CME and CCP dynamics were unperturbed in cells overexpressing α-eGFP. Moreover, α-eGFP was a more sensitive and accurate marker of CCP dynamics than mRuby-CLCa. Thus, our work establishes α-eGFP as a robust, fully functional marker for CME.


Subject(s)
Clathrin , Coated Pits, Cell-Membrane , Adaptor Protein Complex 2/metabolism , Adaptor Protein Complex alpha Subunits/metabolism , Clathrin/metabolism , Coated Pits, Cell-Membrane/metabolism , Endocytosis , Protein Binding
10.
J Cell Biol ; 219(9)2020 09 07.
Article in English | MEDLINE | ID: mdl-32520988

ABSTRACT

Clathrin-mediated endocytosis (CME) occurs via the formation of clathrin-coated vesicles from clathrin-coated pits (CCPs). Clathrin is recruited to CCPs through interactions between the AP2 complex and its N-terminal domain, which in turn recruits endocytic accessory proteins. Inhibitors of CME that interfere with clathrin function have been described, but their specificity and mechanisms of action are unclear. Here we show that overexpression of the N-terminal domain with (TDD) or without (TD) the distal leg inhibits CME and CCP dynamics by perturbing clathrin interactions with AP2 and SNX9. TDD overexpression does not affect clathrin-independent endocytosis or, surprisingly, AP1-dependent lysosomal trafficking from the Golgi. We designed small membrane-permeant peptides that encode key functional residues within the four known binding sites on the TD. One peptide, Wbox2, encoding residues along the W-box motif binding surface, binds to SNX9 and AP2 and potently and acutely inhibits CME.


Subject(s)
Clathrin-Coated Vesicles/metabolism , Clathrin/metabolism , Endocytosis/physiology , Peptides/metabolism , Adaptor Protein Complex 2/metabolism , Binding Sites/physiology , Cell Line , Coated Pits, Cell-Membrane/metabolism , Golgi Apparatus/metabolism , HeLa Cells , Humans , Protein Binding/physiology , Protein Transport/physiology , Sorting Nexins/metabolism
11.
Mol Biol Cell ; 31(18): 2035-2047, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32579424

ABSTRACT

Dynamin GTPases (Dyn1 and Dyn2) are indispensable proteins of the core clathrin-mediated endocytosis (CME) machinery. Best known for their role in fission at the late stages of CME, many studies have suggested that dynamin also plays a regulatory role during the early stages of CME; however, detailed studies regarding isoform-specific early regulatory functions of the dynamins are lacking. With a recent understanding of the regulation of Dyn1 in nonneuronal cells and improved algorithms for highly sensitive and quantitative analysis of clathrin-coated pit (CCP) dynamics, we have evaluated the differential functions of dynamin isoforms in CME using domain swap chimeras. We report that Dyn1 and Dyn2 play nonredundant, early regulatory roles during CME in nonneuronal cells. The proline/arginine-rich domain of Dyn2 is important for its targeting to nascent and growing CCPs, whereas the membrane-binding and curvature-generating pleckstrin homology domain of Dyn1 plays an important role in stabilizing nascent CCPs. We confirm the enhanced ability of dephosphorylated Dyn1 to support CME, even at substoichiometric levels compared with Dyn2. Domain swap chimeras also revealed previously unknown functional differences in the GTPase and stalk domains. Our study significantly extends the current understanding of the regulatory roles played by dynamin isoforms during early stages of CME.


Subject(s)
Dynamins/metabolism , Endocytosis/physiology , Cell Line , Clathrin/metabolism , Clathrin-Coated Vesicles/metabolism , Clathrin-Coated Vesicles/physiology , Dynamin I/metabolism , Dynamin II/metabolism , Dynamins/physiology , GTP Phosphohydrolases/metabolism , Humans , Protein Isoforms , Signal Transduction
12.
Elife ; 92020 04 30.
Article in English | MEDLINE | ID: mdl-32352376

ABSTRACT

Clathrin-mediated endocytosis (CME) in mammalian cells is driven by resilient machinery that includes >70 endocytic accessory proteins (EAP). Accordingly, perturbation of individual EAPs often results in minor effects on biochemical measurements of CME, thus providing inconclusive/misleading information regarding EAP function. Live-cell imaging can detect earlier roles of EAPs preceding cargo internalization; however, this approach has been limited because unambiguously distinguishing abortive coats (ACs) from bona fide clathrin-coated pits (CCPs) is required but unaccomplished. Here, we develop a thermodynamics-inspired method, "disassembly asymmetry score classification (DASC)", that resolves ACs from CCPs based on single channel fluorescent movies. After extensive verification, we use DASC-resolved ACs and CCPs to quantify CME progression in 11 EAP knockdown conditions. We show that DASC is a sensitive detector of phenotypic variation in CCP dynamics that is uncorrelated to the variation in biochemical measurements of CME. Thus, DASC is an essential tool for uncovering EAP function.


Subject(s)
Clathrin/physiology , Endocytosis/physiology , Clathrin-Coated Vesicles/physiology , Coated Pits, Cell-Membrane/physiology , Humans , Thermodynamics
13.
Nat Cell Biol ; 22(6): 674-688, 2020 06.
Article in English | MEDLINE | ID: mdl-32451441

ABSTRACT

The dynamin GTPase is known to bundle actin filaments, but the underlying molecular mechanism and physiological relevance remain unclear. Our genetic analyses revealed a function of dynamin in propelling invasive membrane protrusions during myoblast fusion in vivo. Using biochemistry, total internal reflection fluorescence microscopy, electron microscopy and cryo-electron tomography, we show that dynamin bundles actin while forming a helical structure. At its full capacity, each dynamin helix captures 12-16 actin filaments on the outer rim of the helix. GTP hydrolysis by dynamin triggers disassembly of fully assembled dynamin helices, releasing free dynamin dimers/tetramers and facilitating Arp2/3-mediated branched actin polymerization. The assembly/disassembly cycles of dynamin promote continuous actin bundling to generate mechanically stiff actin super-bundles. Super-resolution and immunogold platinum replica electron microscopy revealed dynamin along actin bundles at the fusogenic synapse. These findings implicate dynamin as a unique multifilament actin-bundling protein that regulates the dynamics and mechanical strength of the actin cytoskeletal network.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Communication , Drosophila melanogaster/metabolism , Dynamins/metabolism , Endocytosis , Actin-Related Protein 2-3 Complex/metabolism , Actins/genetics , Amino Acid Sequence , Animals , Drosophila melanogaster/genetics , Dynamins/genetics , Female , Guanosine Triphosphate/metabolism , Male , Myoblasts/cytology , Myoblasts/metabolism , Protein Binding , Sequence Homology
14.
J Cell Biol ; 218(6): 1928-1942, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31043431

ABSTRACT

Multiple mechanisms contribute to cancer cell progression and metastatic activity, including changes in endocytic trafficking and signaling of cell surface receptors downstream of gain-of-function (GOF) mutant p53. We report that dynamin-1 (Dyn1) is up-regulated at both the mRNA and protein levels in a manner dependent on expression of GOF mutant p53. Dyn1 is required for the recruitment and accumulation of the signaling scaffold, APPL1, to a spatially localized subpopulation of endosomes at the cell perimeter. We developed new tools to quantify peripherally localized early endosomes and measure the rapid recycling of integrins. We report that these perimeter APPL1 endosomes modulate Akt signaling and activate Dyn1 to create a positive feedback loop required for rapid recycling of EGFR and ß1 integrins, increased focal adhesion turnover, and cell migration. Thus, Dyn1- and Akt-dependent perimeter APPL1 endosomes function as a nexus that integrates signaling and receptor trafficking, which can be co-opted and amplified in mutant p53-driven cancer cells to increase migration and invasion.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Movement , Dynamin I/metabolism , Endosomes/metabolism , Mutation , Tumor Suppressor Protein p53/metabolism , Adaptor Proteins, Signal Transducing/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Adhesion , Cell Membrane , Dynamin I/genetics , Endocytosis , ErbB Receptors/genetics , ErbB Receptors/metabolism , Feedback, Physiological , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Protein Transport , Signal Transduction , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics
15.
Interface Focus ; 9(2): 20180076, 2019 Apr 06.
Article in English | MEDLINE | ID: mdl-30842875

ABSTRACT

Cholera toxin (CT) is a secreted bacterial toxin that binds to glycoconjugate receptors on the surface of mammalian cells, enters mammalian cells through endocytic mechanisms and intoxicates mammalian cells by activating cytosolic adenylate cyclase. CT recognizes cell surface receptors through its B subunit (CTB). While the ganglioside GM1 has been historically described as the sole receptor, CTB is also capable of binding to fucosylated glycoconjugates, and fucosylated molecules have been shown to play a functional role in host cell intoxication by CT. Here, we use colonic epithelial and respiratory epithelial cell lines to examine how two types of CT receptors-gangliosides and fucosylated glycoconjugates-contribute to CTB internalization. We show that fucosylated glycoconjugates contribute to CTB binding to and internalization into host cells, even when the ganglioside GM1 is present. The contributions of the two classes of receptors to CTB internalization depend on cell type. Additionally, in a cell line that harbours both classes of receptors, gangliosides dictate the efficiency of CTB internalization. Together, the results lend support to the idea that fucosylated glycoconjugates play a functional role in CTB internalization, and suggest that CT internalization depends on both receptor identity and cell type.

16.
Annu Rev Biochem ; 87: 871-896, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29661000

ABSTRACT

Clathrin-mediated endocytosis (CME) is the major endocytic pathway in mammalian cells. It is responsible for the uptake of transmembrane receptors and transporters, for remodeling plasma membrane composition in response to environmental changes, and for regulating cell surface signaling. CME occurs via the assembly and maturation of clathrin-coated pits that concentrate cargo as they invaginate and pinch off to form clathrin-coated vesicles. In addition to the major coat proteins, clathrin triskelia and adaptor protein complexes, CME requires a myriad of endocytic accessory proteins and phosphatidylinositol lipids. CME is regulated at multiple steps-initiation, cargo selection, maturation, and fission-and is monitored by an endocytic checkpoint that induces disassembly of defective pits. Regulation occurs via posttranslational modifications, allosteric conformational changes, and isoform and splice-variant differences among components of the CME machinery, including the GTPase dynamin. This review summarizes recent findings on the regulation of CME and the evolution of this complex process.


Subject(s)
Clathrin/metabolism , Endocytosis/physiology , Adaptor Protein Complex 2/chemistry , Adaptor Protein Complex 2/metabolism , Allosteric Regulation , Animals , Clathrin/chemistry , Clathrin-Coated Vesicles/metabolism , Dynamins/chemistry , Dynamins/metabolism , Evolution, Molecular , Humans , Models, Biological , Phosphatidylinositol Phosphates/metabolism , Phosphorylation , Protein Conformation , Signal Transduction
17.
Nat Med ; 24(5): 617-627, 2018 05.
Article in English | MEDLINE | ID: mdl-29662201

ABSTRACT

Proliferating cells, compared with quiescent cells, are more dependent on glucose for their growth. Although glucose transport in keratinocytes is mediated largely by the Glut1 facilitative transporter, we found that keratinocyte-specific ablation of Glut1 did not compromise mouse skin development and homeostasis. Ex vivo metabolic profiling revealed altered sphingolipid, hexose, amino acid, and nucleotide metabolism in Glut1-deficient keratinocytes, thus suggesting metabolic adaptation. However, cultured Glut1-deficient keratinocytes displayed metabolic and oxidative stress and impaired proliferation. Similarly, Glut1 deficiency impaired in vivo keratinocyte proliferation and migration within wounded or UV-damaged mouse skin. Notably, both genetic and pharmacological Glut1 inactivation decreased hyperplasia in mouse models of psoriasis-like disease. Topical application of a Glut1 inhibitor also decreased inflammation in these models. Glut1 inhibition decreased the expression of pathology-associated genes in human psoriatic skin organoids. Thus, Glut1 is selectively required for injury- and inflammation-associated keratinocyte proliferation, and its inhibition offers a novel treatment strategy for psoriasis.


Subject(s)
Glucose/metabolism , Homeostasis , Psoriasis/therapy , Skin/injuries , Skin/metabolism , Animals , Biological Transport/radiation effects , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cells, Cultured , Disease Models, Animal , Fatty Acids/metabolism , Gene Deletion , Glucose Transporter Type 1/deficiency , Glucose Transporter Type 1/metabolism , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Keratinocytes/radiation effects , Mice, Inbred C57BL , Oxidation-Reduction , Psoriasis/pathology , Skin/pathology , Stress, Physiological , Ultraviolet Rays
18.
J Cell Biol ; 216(11): 3745-3765, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28923975

ABSTRACT

The conditional use of actin during clathrin-mediated endocytosis in mammalian cells suggests that the cell controls whether and how actin is used. Using a combination of biochemical reconstitution and mammalian cell culture, we elucidate a mechanism by which the coincidence of PI(4,5)P2 and PI(3)P in a curved vesicle triggers actin polymerization. At clathrin-coated pits, PI(3)P is produced by the INPP4A hydrolysis of PI(3,4)P2, and this is necessary for actin-driven endocytosis. Both Cdc42⋅guanosine triphosphate and SNX9 activate N-WASP-WIP- and Arp2/3-mediated actin nucleation. Membrane curvature, PI(4,5)P2, and PI(3)P signals are needed for SNX9 assembly via its PX-BAR domain, whereas signaling through Cdc42 is activated by PI(4,5)P2 alone. INPP4A activity is stimulated by high membrane curvature and synergizes with SNX9 BAR domain binding in a process we call curvature cascade amplification. We show that the SNX9-driven actin comets that arise on human disease-associated oculocerebrorenal syndrome of Lowe (OCRL) deficiencies are reduced by inhibiting PI(3)P production, suggesting PI(3)P kinase inhibitors as a therapeutic strategy in Lowe syndrome.


Subject(s)
Actins/metabolism , Clathrin-Coated Vesicles/metabolism , Clathrin/metabolism , Coated Pits, Cell-Membrane/metabolism , Endocytosis , Phosphatidylinositols/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Animals , CRISPR-Cas Systems , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , HeLa Cells , Humans , Hydrolysis , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Multimerization , RNA Interference , Retinal Pigment Epithelium/metabolism , Signal Transduction , Sorting Nexins/genetics , Sorting Nexins/metabolism , Time Factors , Transfection , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Xenopus laevis , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
19.
Dev Cell ; 40(3): 278-288.e5, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28171750

ABSTRACT

Signaling receptors are internalized and regulated by clathrin-mediated endocytosis (CME). Two clathrin light chain isoforms, CLCa and CLCb, are integral components of the endocytic machinery whose differential functions remain unknown. We report that CLCb is specifically upregulated in non-small-cell lung cancer (NSCLC) cells and is associated with poor patient prognosis. Engineered single CLCb-expressing NSCLC cells, as well as "switched" cells that predominantly express CLCb, exhibit increased rates of CME and altered clathrin-coated pit dynamics. This "adaptive CME" resulted from upregulation of dynamin-1 (Dyn1) and its activation through a positive feedback loop involving enhanced epidermal growth factor (EGF)-dependent Akt/GSK3ß phosphorylation. CLCb/Dyn1-dependent adaptive CME selectively altered EGF receptor trafficking, enhanced cell migration in vitro, and increased the metastatic efficiency of NSCLC cells in vivo. We define molecular mechanisms for adaptive CME in cancer cells and a role for the reciprocal crosstalk between signaling and CME in cancer progression.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Clathrin Light Chains/metabolism , Clathrin/metabolism , Dynamin I/metabolism , Endocytosis , ErbB Receptors/metabolism , Lung Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Movement , Coated Pits, Cell-Membrane/metabolism , Endosomes/metabolism , Female , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Lung Neoplasms/genetics , Mice, Nude , Neoplasm Metastasis , Phosphorylation , Protein Transport , Proto-Oncogene Proteins c-akt/metabolism , Risk Factors , Signal Transduction , Survival Analysis , Up-Regulation/genetics
20.
PLoS Pathog ; 12(12): e1006102, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28002492

ABSTRACT

The type I interferon (IFN) activated transcriptional response is a critical antiviral defense mechanism, yet its role in bacterial pathogenesis remains less well characterized. Using an intracellular pathogen Listeria monocytogenes (Lm) as a model bacterial pathogen, we sought to identify the roles of individual interferon-stimulated genes (ISGs) in context of bacterial infection. Previously, IFN has been implicated in both restricting and promoting Lm growth and immune stimulatory functions in vivo. Here we adapted a gain-of-function flow cytometry based approach to screen a library of more than 350 human ISGs for inhibitors and enhancers of Lm infection. We identify 6 genes, including UNC93B1, MYD88, AQP9, and TRIM14 that potently inhibit Lm infection. These inhibitors act through both transcription-mediated (MYD88) and non-transcriptional mechanisms (TRIM14). Further, we identify and characterize the human high affinity immunoglobulin receptor FcγRIa as an enhancer of Lm internalization. Our results reveal that FcγRIa promotes Lm uptake in the absence of known host Lm internalization receptors (E-cadherin and c-Met) as well as bacterial surface internalins (InlA and InlB). Additionally, FcγRIa-mediated uptake occurs independently of Lm opsonization or canonical FcγRIa signaling. Finally, we established the contribution of FcγRIa to Lm infection in phagocytic cells, thus potentially linking the IFN response to a novel bacterial uptake pathway. Together, these studies provide an experimental and conceptual basis for deciphering the role of IFN in bacterial defense and virulence at single-gene resolution.


Subject(s)
Interferon Type I/immunology , Listeriosis/immunology , Virulence/immunology , Cell Line , Flow Cytometry , High-Throughput Nucleotide Sequencing , Humans , Immunoblotting , Listeria monocytogenes/immunology , Listeriosis/genetics , Microscopy, Electron, Scanning , Polymerase Chain Reaction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...