Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 26(6): 2310-2350, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24894045

ABSTRACT

We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R2 = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.

2.
Plant Cell ; 26(4): 1410-1435, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24748044

ABSTRACT

Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration. Transcripts and proteins of the Calvin-Benson cycle are reduced in N-deficient cells, resulting in the accumulation of cycle metabolic intermediates. Both cytosolic and chloroplast ribosomes are reduced, but via different mechanisms, reflected by rapid changes in abundance of RNAs encoding chloroplast ribosomal proteins but not cytosolic ones. RNAs encoding transporters and enzymes for metabolizing alternative N sources increase in abundance, as is appropriate for the soil environmental niche of C. reinhardtii. Comparison of the N-replete versus N-deplete proteome indicated that abundant proteins with a high N content are reduced in N-starved cells, while the proteins that are increased have lower than average N contents. This sparing mechanism contributes to a lower cellular N/C ratio and suggests an approach for engineering increased N-use efficiency.

3.
Plant Cell ; 25(11): 4305-23, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24280389

ABSTRACT

To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall-deficient (cw) strain purported to represent the parental STA6 strain, and three independent STA6 strains generated by complementation of sta6 (CC-4565/STA6-C2, CC-4566/STA6-C4, and CC-4567/STA6-C6) in the context of N deprivation. Despite N starvation-induced dramatic remodeling of the transcriptome, there were relatively few differences (5 × 10(2)) observed between sta6 and STA6, the most dramatic of which were increased abundance of transcripts encoding key regulated or rate-limiting steps in central carbon metabolism, specifically isocitrate lyase, malate synthase, transaldolase, fructose bisphosphatase and phosphoenolpyruvate carboxykinase (encoded by ICL1, MAS1, TAL1, FBP1, and PCK1 respectively), suggestive of increased carbon movement toward hexose-phosphate in sta6 by upregulation of the glyoxylate pathway and gluconeogenesis. Enzyme assays validated the increase in isocitrate lyase and malate synthase activities. Targeted metabolite analysis indicated increased succinate, malate, and Glc-6-P and decreased Fru-1,6-bisphosphate, illustrating the effect of these changes. Comparisons of independent data sets in multiple strains allowed the delineation of a sequence of events in the global N starvation response in C. reinhardtii, starting within minutes with the upregulation of alternative N assimilation routes and carbohydrate synthesis and subsequently a more gradual upregulation of genes encoding enzymes of TAG synthesis. Finally, genome resequencing analysis indicated that (1) the deletion in sta6 extends into the neighboring gene encoding respiratory burst oxidase, and (2) a commonly used STA6 strain (CC-4349) as well as the sequenced reference (CC-503) are not congenic with respect to sta6 (CC-4348), underscoring the importance of using complemented strains for more rigorous assignment of phenotype to genotype.


Subject(s)
Carbon/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Enzymes/metabolism , Nitrogen/metabolism , Acetates/metabolism , Carbohydrate Metabolism , Cell Wall/genetics , Cell Wall/metabolism , Enzymes/genetics , Genome, Plant , Molecular Sequence Data , Mutation , Polymorphism, Single Nucleotide , Reproducibility of Results , Starch/genetics , Starch/metabolism , Transcriptome
4.
Front Plant Sci ; 2: 61, 2011.
Article in English | MEDLINE | ID: mdl-22639601

ABSTRACT

Although plant metabolomics is largely carried out on Arabidopsis it is essentially genome-independent, and thus potentially applicable to a wide range of species. However, transfer between species, or even between different tissues of the same species, is not facile. This is because the reliability of protocols for harvesting, handling and analysis depends on the biological features and chemical composition of the plant tissue. In parallel with the diversification of model species it is important to establish good handling and analytic practice, in order to augment computational comparisons between tissues and species. Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics is one of the powerful approaches for metabolite profiling. By using a combination of different extraction methods, separation columns, and ion detection, a very wide range of metabolites can be analyzed. However, its application requires careful attention to exclude potential pitfalls, including artifactual changes in metabolite levels during sample preparation under variations of light or temperature and analytic errors due to ion suppression. Here we provide case studies with two different LC-MS-based metabolomics platforms and four species (Arabidopsis thaliana, Chlamydomonas reinhardtii, Solanum lycopersicum, and Oryza sativa) that illustrate how such dangers can be detected and circumvented.

5.
Mol Plant ; 2(6): 1233-46, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19946617

ABSTRACT

In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and develops a distinctive but previously unexplained chlorotic phenotype as leaves mature. The introduction of additional mutations that prevent starch synthesis, or that block maltose production from starch, also prevent chlorosis of mex1. In contrast, introduction of mutations in disproportionating enzyme (DPE1) results in the accumulation of maltotriose in addition to maltose, and greatly increases chlorosis. These data suggest a link between maltose accumulation and chloroplast homeostasis. Microscopic analyses show that the mesophyll cells in chlorotic mex1 leaves have fewer than half the number of chloroplasts than wild-type cells. Transmission electron microscopy reveals autophagy-like chloroplast degradation in both mex1 and the dpe1/mex1 double mutant. Microarray analyses reveal substantial reprogramming of metabolic and cellular processes, suggesting that organellar protein turnover is increased in mex1, though leaf senescence and senescence-related chlorophyll catabolism are not induced. We propose that the accumulation of maltose and malto-oligosaccharides causes chloroplast dysfunction, which may by signaled via a form of retrograde signaling and trigger chloroplast degradation.


Subject(s)
Arabidopsis/metabolism , Chloroplasts/metabolism , Starch/antagonists & inhibitors , Starch/metabolism , Arabidopsis/genetics , Chloroplasts/genetics , Chloroplasts/ultrastructure , Mutation , Phenotype , Photosynthesis/genetics , Plant Leaves/growth & development
6.
Plant Cell ; 20(4): 1040-58, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18390594

ABSTRACT

This work investigated the roles of beta-amylases in the breakdown of leaf starch. Of the nine beta-amylase (BAM)-like proteins encoded in the Arabidopsis thaliana genome, at least four (BAM1, -2, -3, and -4) are chloroplastic. When expressed as recombinant proteins in Escherichia coli, BAM1, BAM2, and BAM3 had measurable beta-amylase activity but BAM4 did not. BAM4 has multiple amino acid substitutions relative to characterized beta-amylases, including one of the two catalytic residues. Modeling predicts major differences between the glucan binding site of BAM4 and those of active beta-amylases. Thus, BAM4 probably lost its catalytic capacity during evolution. Total beta-amylase activity was reduced in leaves of bam1 and bam3 mutants but not in bam2 and bam4 mutants. The bam3 mutant had elevated starch levels and lower nighttime maltose levels than the wild type, whereas bam1 did not. However, the bam1 bam3 double mutant had a more severe phenotype than bam3, suggesting functional overlap between the two proteins. Surprisingly, bam4 mutants had elevated starch levels. Introduction of the bam4 mutation into the bam3 and bam1 bam3 backgrounds further elevated the starch levels in both cases. These data suggest that BAM4 facilitates or regulates starch breakdown and operates independently of BAM1 and BAM3. Together, our findings are consistent with the proposal that beta-amylase is a major enzyme of starch breakdown in leaves, but they reveal unexpected complexity in terms of the specialization of protein function.


Subject(s)
Arabidopsis/enzymology , Chloroplasts/enzymology , Starch/metabolism , beta-Amylase/metabolism , Amino Acid Sequence , Base Sequence , Catalysis , DNA Primers , Escherichia coli/genetics , Microscopy, Fluorescence , Molecular Sequence Data , Recombinant Proteins/genetics , Sequence Homology, Amino Acid , beta-Amylase/chemistry , beta-Amylase/genetics
7.
Funct Plant Biol ; 34(6): 465-473, 2007 Jun.
Article in English | MEDLINE | ID: mdl-32689375

ABSTRACT

The aim of this article is to provide an overview of current models of starch breakdown in leaves. We summarise the results of our recent work focusing on Arabidopsis, relating them to other work in the field. Early biochemical studies of starch containing tissues identified numerous enzymes capable of participating in starch degradation. In the non-living endosperms of germinated cereal seeds, starch breakdown proceeds by the combined actions of α-amylase, limit dextrinase (debranching enzyme), ß-amylase and α-glucosidase. The activities of these enzymes and the regulation of some of the respective genes on germination have been extensively studied. In living plant cells, additional enzymes are present, such as α-glucan phosphorylase and disproportionating enzyme, and the major pathway of starch breakdown appears to differ from that in the cereal endosperm in some important aspects. For example, reverse-genetic studies of Arabidopsis show that α-amylase and limit-dextrinase play minor roles and are dispensable for starch breakdown in leaves. Current data also casts doubt on the involvement of α-glucosidase. In contrast, several lines of evidence point towards a major role for ß-amylase in leaves, which functions together with disproportionating enzyme and isoamylase (debranching enzyme) to produce maltose and glucose. Furthermore, the characterisation of Arabidopsis mutants with elevated leaf starch has contributed to the discovery of previously unknown proteins and metabolic steps in the pathway. In particular, it is now apparent that glucan phosphorylation is required for normal rates of starch mobilisation to occur, although a detailed understanding of this step is still lacking. We use this review to give a background to some of the classical genetic mutants that have contributed to our current knowledge.

SELECTION OF CITATIONS
SEARCH DETAIL
...