Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 55(Pt 6): 1603-1612, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36570666

ABSTRACT

Kinetic small-angle neutron scattering provides access to the microscopic properties of mesoscale systems under slow, periodic perturbations. By interlocking the phases of neutron pulse, sample modulation and detector signal, time-involved small-angle neutron scattering experiments (TISANE) allow one to exploit the neutron velocity spread and record data without major sacrifice in intensity at timescales down to microseconds. This article reviews the optimization strategies of TISANE that arise from specific aspects of the process of data acquisition and data analysis starting from the basic principles of operation. Typical artifacts of data recorded in TISANE due to the choice of time binning and neutron chopper pulse width are illustrated by virtue of the response of the skyrmion lattice in MnSi under periodic changes of the direction of the stabilizing magnetic field.

2.
Phys Rev Lett ; 126(1): 017202, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33480751

ABSTRACT

In the cubic chiral magnet Cu_{2}OSeO_{3} a low-temperature skyrmion state (LTS) and a concomitant tilted conical state are observed for magnetic fields parallel to ⟨100⟩. Here, we report on the dynamic resonances of these novel magnetic states. After promoting the nucleation of the LTS by means of field cycling, we apply broadband microwave spectroscopy in two experimental geometries that provide either predominantly in-plane or out-of-plane excitation. By comparing the results to linear spin-wave theory, we clearly identify resonant modes associated with the tilted conical state, the gyrational and breathing modes associated with the LTS, as well as the hybridization of the breathing mode with a dark octupole gyration mode mediated by the magnetocrystalline anisotropies. Most intriguingly, our findings suggest that under decreasing fields the hexagonal skyrmion lattice becomes unstable with respect to an oblique deformation, reflected in the formation of elongated skyrmions.

3.
J Appl Crystallogr ; 48(Pt 5): 1437-1450, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26500464

ABSTRACT

On the basis of the continuum theory of micromagnetics, the correlation function of the spin-misalignment small-angle neutron scattering cross section of bulk ferromagnets (e.g. elemental polycrystalline ferromagnets, soft and hard magnetic nanocomposites, nanoporous ferromagnets, or magnetic steels) is computed. For such materials, the spin disorder which is related to spatial variations in the saturation magnetization and magnetic anisotropy field results in strong spin-misalignment scattering dΣM/dΩ along the forward direction. When the applied magnetic field is perpendicular to the incoming neutron beam, the characteristics of dΣM/dΩ (e.g. the angular anisotropy on a two-dimensional detector or the asymptotic power-law exponent) are determined by the ratio of magnetic anisotropy field strength Hp to the jump ΔM in the saturation magnetization at internal interfaces. Here, the corresponding one- and two-dimensional real-space correlations are analyzed as a function of applied magnetic field, the ratio Hp/ΔM, the single-particle form factor and the particle volume fraction. Finally, the theoretical results for the correlation function are compared with experimental data on nanocrystalline cobalt and nickel.

SELECTION OF CITATIONS
SEARCH DETAIL
...