Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Chem ; 18(1): 52, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486282

ABSTRACT

Various sets of thiazole, thiophene, and 2-pyridone ring structures containing a dimethylaniline component were synthesized. Substituted thiazoles 2-3 and thiophenes 5-7 were produced by reacting thiocarbamoyl compound 4 with α-halogenated reagents in different basic conditions. Also, a series of 2-pyridone derivatives 9a-f substituted with dimethylaniline was synthesized through Michael addition of malononitrile to α,ß-unsaturated nitrile derivatives 8a-f. The synthesized products were structurally proven by spectroscopic methods such as IR, 1H NMR, 13C NMR, and MS data. Furthermore, the anti-cancer efficacy of the compounds was assessed using the MTT assay on two cell lines: hepatocellular carcinoma (HepG-2) and breast cancer (MDA-MB-231). The results showed the highest growth inhibition for derivatives 2, 6, 7, and 9c, which were further examined for their IC50 values. The IC50 for compound 2 showed equipotent activity (IC50 = 1.2 µM) against the HepG-2 cell line compared to Doxorubicin (IC50 = 1.1 µM). Compounds 2, 6, 7 and 9c showed very good ADME assessments for further drug administration. Moreover, the PASS theoretical prediction for the compounds showed high antimitotic and antineoplastic activities for compounds 2, 6, 7, and 9c, as well as potent inhibition activity for the insulysin enzyme (IDE). Molecular docking stimulations were performed on CDK1/CyclinB1/CKS2 (PDB ID: 4y72) and BPTI (PDB ID: 2ra3). When docked into (PDB ID: 4y72), all of the tested compounds showed considerable inhibition, and the 2-pyridone derivative 9d had the maximum binding affinity (- 8.1223 kcal/mol). While thiophene derivative 6 offered the maximum binding affinity (- 7.5094 kcal/mol) when docked into (PDB ID: 2ra3).

2.
Bioorg Chem ; 135: 106492, 2023 06.
Article in English | MEDLINE | ID: mdl-37001471

ABSTRACT

Several pyrazole-benzene sulfonamides were reported as human carbonic anhydrase inhibitors. In this research work, a design of Arylidine-extented 5-oxo-pyrazole benzenesulfonamides (4a-i), (8a-d) and (10a-e) were reported based on tail-approach design. Beside the reported synthetic procedures and confirmation by different analytical procedures, a DFT study was employed to confirm the Z- conformer of the synthesized compounds. In vitro biological assay against four different human carbonic anhydrases took place and based on the results, SAR study was illustrated and selectivity indexes were discussed. Compounds 4g and 8a exhibited the best inhibitory activity among the target compounds with values (hCAIX: KI = 71.2 nM, hCAXII: KI = 22.5 nM), (hCAIX: KI = 34.3 nM, hCAXII: KI = 74.3 nM); respectively. Both of them were subjected to cellular assay against two different cancer cell lines with expressing nature to hCA isoforms under both normoxic and hypoxic conditions. Compound 4g showed the highest cytotoxic activity against MCF-7 cancer cell line (IC50 = 4.15 µM under hypoxic conditions and IC50 = 8.59 µM under normoxic conditions) compared to the reference drug doxorubicin under normoxic, (IC50 = 4.34 µM), and hypoxic, (IC50 = 2.23 µM), conditions. Further cellular investigations were employed to study the effect of this compound on the cell cycle of the affected cell line. Finally, molecular docking supported by molecular dynamic simulation was utilized to understand the mechanism of the inhibitory activity of two of these compounds - as representative examples- based on the designed rational.


Subject(s)
Carbonic Anhydrase Inhibitors , Sulfonamides , Humans , Molecular Structure , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/pharmacology , Molecular Docking Simulation , Sulfonamides/pharmacology , Pyrazoles/pharmacology , Benzenesulfonamides
3.
BMC Chem ; 17(1): 6, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36803621

ABSTRACT

Synthetic strategy for the synthesis of thiophene 2-carboxamide derivatives substituted with hydroxyl, methyl and amino groups at position-3 was proposed. The strategy includes the cyclization of the precursor ethyl 2-arylazo-3-mercapto-3-(phenylamino)acrylate derivatives, 2-acetyl-2-arylazo-thioacetanilide derivatives and N-aryl-2-cyano-3-mercapto-3-(phenylamino)acrylamide derivatives with N-(4-acetylphenyl)-2-chloroacetamide in alcoholic sodium ethoxide. IR, 1H NMR, and mass spectroscopic analyses were used to characterize the synthesized derivatives. In addition, molecular, electronic properties of the synthesized products were studied by the density functional theory (DFT) where they exhibited close HOMO-LUMO energy gap (ΔEH-L) in which the amino derivatives 7a-c have the highest while the methyl derivatives 5a-c were the lowest. Using the ABTS method, the antioxidant properties of the produced compounds were evaluated, where amino thiophene-2-carboxamide 7a exhibit significant inhibition activity 62.0% compared to ascorbic acid The antibacterial activity against two pathogenic Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two of pathogenic Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) revealed that 7b records the highest activity index compared to ampicillin 83.3, 82.6, 64.0, 86.9%, respectively. Furthermore, the thiophene-2-carboxamide derivatives were docked with five different proteins with the use molecular docking tools and the results explained interactions between amino acid residue of enzyme and compounds. Compounds 3b and 3c showed the highest binding score with 2AS1 protein.

SELECTION OF CITATIONS
SEARCH DETAIL
...