Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 53(6): 810-21, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25919006

ABSTRACT

Asthma is a heterogeneous disease characterized by airway inflammation and hyperreactivity. IL-17 receptor A (IL-17RA) is a shared receptor subunit required for activity of IL-17 family cytokines, including IL-17A and IL-25. IL-17A and IL-25 induce different proinflammatory responses, and concentrations are elevated in subjects with asthma. However, the individual contributions of IL-17A and IL-25 to disease pathogenesis are unclear. We explored proinflammatory activities of the IL-17 pathway in models of pulmonary inflammation and assessed its effects on contractility of human bronchial airway smooth muscle. In two mouse models, IL-17RA, IL-17RB, or IL-25 blockade reduced airway inflammation and airway hyperreactivity. Individually, IL-17A and IL-25 enhanced contractility of human bronchial smooth muscle induced by methacholine or carbachol. IL-17A had more pronounced effects on methacholine-induced contractility in bronchial rings from donors with asthma compared with donors without asthma. Blocking the IL-17 pathway via IL-17RA may be a useful therapy for some patients with asthma by reducing pulmonary inflammation and airway hyperreactivity.


Subject(s)
Asthma/metabolism , Receptors, Interleukin-17/physiology , Animals , Asthma/immunology , Bronchi/immunology , Bronchi/pathology , Cells, Cultured , Gene Expression , Humans , Interleukin-17/physiology , Interleukins/physiology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , Signal Transduction
2.
J Med Chem ; 58(1): 480-511, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25469863

ABSTRACT

The development and optimization of a series of quinolinylpurines as potent and selective PI3Kδ kinase inhibitors with excellent physicochemical properties are described. This medicinal chemistry effort led to the identification of 1 (AMG319), a compound with an IC50 of 16 nM in a human whole blood assay (HWB), excellent selectivity over a large panel of protein kinases, and a high level of in vivo efficacy as measured by two rodent disease models of inflammation.


Subject(s)
Adenosine/pharmacology , Autoimmune Diseases/prevention & control , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Inflammation/prevention & control , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Adenosine/chemistry , Adenosine/metabolism , Animals , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/metabolism , Crystallography, X-Ray , Disease Models, Animal , Drug Discovery , Female , Humans , Mice, Inbred BALB C , Mice, Transgenic , Models, Chemical , Models, Molecular , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Quinolines/chemistry , Quinolines/metabolism , Rats, Inbred Lew , Sf9 Cells , Structure-Activity Relationship
4.
Eur J Pharmacol ; 610(1-3): 110-8, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19292985

ABSTRACT

The ICOS (Inducible T cell Co-Stimulator)/B7RP-1 (B7-related protein 1) interaction is critical for the proper activation of a T lymphocyte. In this manuscript we describe a systematic in vivo approach to determine the level of blockade required to impair the generation of a T cell-dependent antibody response. We have developed an overall strategy for correlating drug exposure, target saturation, and efficacy in a biological response that can be generalized for most protein therapeutics. Using this strategy, we determined that low levels of B7RP-1 blockade are still sufficient to inhibit the immune response. These data suggest that contact between the T cell and the antigen-presenting cell during antigen presentation is much more sensitive to inhibition than previously believed and that ICOS/B7RP-1 blockade may be efficacious in the treatment of autoimmune diseases.


Subject(s)
B7-1 Antigen/pharmacology , Immune System Phenomena/drug effects , Aluminum Hydroxide/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antigen-Presenting Cells/immunology , Antigens, CD19/metabolism , B-Lymphocytes/metabolism , B7-1 Antigen/genetics , Binding Sites , CD3 Complex/metabolism , Cytokines/blood , Dose-Response Relationship, Drug , Female , Fluorescein-5-isothiocyanate/metabolism , Fluorescent Dyes/metabolism , Hemocyanins/immunology , Inducible T-Cell Co-Stimulator Ligand , Mice , Mice, Inbred BALB C , Models, Immunological , Protein Binding , Recombinant Fusion Proteins/pharmacology , T-Lymphocytes/metabolism , Temperature , Time Factors
5.
J Immunol ; 182(3): 1421-8, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19155489

ABSTRACT

Autoimmune diseases are marked by the presence of class-switched, high-affinity autoantibodies with pathogenic potential. Costimulation plays an important role in the activation of T cells and the development of T cell-dependent B cell responses. ICOS plays an indispensable role in the development of follicular helper T cells (T(FH) cells), which provide cognate help to germinal center (GC) B cells. We show that the levels of T(FH) cells and GC B cells in two different models of autoimmunity, the New Zealand Black/New Zealand White (NZB/NZW) F(1) mouse model of systemic lupus erythematosus and the collagen-induced arthritis model of rheumatoid arthritis, are dependent on the maintenance of the ICOS/B7RP-1 pathway. Treatment with an anti-B7RP-1 Ab ameliorates disease manifestations and leads to a decrease in T(FH) cells and GC B cells as well as an overall decrease in the frequency of ICOS(+) T cells. Coculture experiments of Ag-primed B cells with CXCR5(+) or CXCR5(-) T cells show that blocking B7RP-1 does not directly impact the production of IgG by B cells. These findings further support the role of ICOS in autoimmunity and suggest that the expansion of the T(FH) cell pool is an important mechanism by which ICOS regulates Ab production.


Subject(s)
Antibodies, Blocking/administration & dosage , Antibodies, Monoclonal/administration & dosage , Autoantibodies/biosynthesis , B7-1 Antigen/immunology , Cell Differentiation/immunology , Germinal Center/immunology , Signal Transduction/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/physiology , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Experimental/therapy , Autoantibodies/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , B7-1 Antigen/physiology , Female , Germinal Center/metabolism , Germinal Center/pathology , Inducible T-Cell Co-Stimulator Ligand , Inducible T-Cell Co-Stimulator Protein , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Lupus Erythematosus, Systemic/therapy , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Mice, Inbred NZB , Random Allocation , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...