Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Lipids ; 41(8): 739-47, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17120926

ABSTRACT

Schizochytrium sp. is a marine microalga that has been developed as a commercial source for docosahexaenoic acid (DHA, C22:6 (omega-3), enriched biomass, and oil. Previous work suggested that the DHA, as well as docosapentaenoic acid (DPA, C22:5 omega-6), that accumulate in Schizochytrium are products of a multi-subunit polyunsaturated fatty acid (PUFA) synthase (1). Here we show data to support this view and also provide information on other aspects of fatty acid synthesis in this organism. Three genes encoding subunits of the PUFA synthase were isolated from genomic DNA and expressed in E. coli along with an essential accessory gene encoding a phosphopantetheinyl transferase (PPTase). The resulting transformants accumulated both DHA and DPA. The ratio of DHA to DPA was approximately the same as that observed in Schizochytrium. Treatment of Schizochytrium cells with certain levels of cerulenin resulted in inhibition of 14C acetate incorporation into short chain fatty acids without affecting labeling of PUFAs, indicating distinct biosynthetic pathways. A single large gene encoding the presumed short chain fatty acid synthase (FAS) was cloned and sequenced. Based on sequence homology and domain organization, the Schizochytrium FAS resembles a fusion of fungal FAS beta and alpha subunits.


Subject(s)
Docosahexaenoic Acids/metabolism , Eukaryota/enzymology , Fatty Acid Synthases/physiology , Fatty Acids, Unsaturated/biosynthesis , Amino Acid Sequence , Base Sequence , Eukaryota/genetics , Fatty Acid Synthases/genetics , Fungi/enzymology , Fungi/genetics , Molecular Sequence Data
2.
Science ; 293(5528): 290-3, 2001 Jul 13.
Article in English | MEDLINE | ID: mdl-11452122

ABSTRACT

Polyunsaturated fatty acids (PUFAs) are essential membrane components in higher eukaryotes and are the precursors of many lipid-derived signaling molecules. Here, pathways for PUFA synthesis are described that do not require desaturation and elongation of saturated fatty acids. These pathways are catalyzed by polyketide synthases (PKSs) that are distinct from previously recognized PKSs in both structure and mechanism. Generation of cis double bonds probably involves position-specific isomerases; such enzymes might be useful in the production of new families of antibiotics. It is likely that PUFA synthesis in cold marine ecosystems is accomplished in part by these PKS enzymes.


Subject(s)
Eukaryotic Cells/metabolism , Fatty Acids, Unsaturated/biosynthesis , Gammaproteobacteria/metabolism , Multienzyme Complexes/metabolism , Anaerobiosis , Arachidonic Acids/biosynthesis , Escherichia coli/enzymology , Escherichia coli/metabolism , Fatty Acid Synthases/metabolism , Genome, Bacterial , Open Reading Frames , Shewanella/metabolism
3.
Plant Physiol ; 122(3): 635-44, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10712526

ABSTRACT

The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.


Subject(s)
Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/isolation & purification , Plants/enzymology , Plants/genetics , Amino Acid Sequence , Base Sequence , Brassica/genetics , Brassica/metabolism , Cloning, Molecular , DNA Primers/genetics , DNA, Complementary/genetics , DNA, Plant/genetics , Erucic Acids/metabolism , Escherichia coli/genetics , Gene Expression , Molecular Sequence Data , Plant Oils/metabolism , Plants/embryology , Plants, Genetically Modified
4.
Plant Physiol ; 122(3): 645-55, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10712527

ABSTRACT

Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a beta-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. (13)C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds.


Subject(s)
Acyltransferases/genetics , Acyltransferases/isolation & purification , Plants/enzymology , Plants/genetics , Waxes/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Base Sequence , Cloning, Molecular , DNA Primers/genetics , DNA, Complementary/genetics , DNA, Plant/genetics , Gene Expression , Molecular Sequence Data , Plant Oils/chemistry , Plant Oils/metabolism , Plants/embryology , Plants, Genetically Modified , Seeds/genetics , Seeds/metabolism , Sequence Homology, Amino Acid , Waxes/chemistry
5.
FEBS Lett ; 402(1): 62-6, 1997 Jan 27.
Article in English | MEDLINE | ID: mdl-9013860

ABSTRACT

Analysis of the beta-ketoacyl-ACP synthase (KAS) encoded by the fabF gene of Escherichia coli has been hampered by a reported instability of the cloned gene. Here we describe biochemical characterization of purified, active protein from the recombinant fabF gene. This enzyme has the properties ascribed to KAS II and not those of a putative KAS IV reported to be encoded by fabJ, a genomic clone with DNA sequence identical to that of fabF. We also characterize active protein from a recombinant fabB gene and suggest that this method may have a general utility for analysis of KAS enzymes.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Escherichia coli/enzymology , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/isolation & purification , Cerulenin/pharmacology , Cloning, Molecular , Escherichia coli/genetics , Genes, Bacterial , Genetic Vectors , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity , Temperature
6.
Plant Cell ; 8(2): 281-92, 1996 Feb.
Article in English | MEDLINE | ID: mdl-8742713

ABSTRACT

beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/biosynthesis , Fatty Acids/metabolism , Microsomes/enzymology , Plants/enzymology , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/isolation & purification , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Amino Acid Sequence , Base Sequence , Chromatography, Gel , Cloning, Molecular , DNA Primers , DNA, Complementary , Fatty Acids/analysis , Molecular Sequence Data , Mutagenesis , Oils , Plants/genetics , Plants, Genetically Modified , Polymerase Chain Reaction , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Seeds , Sequence Homology, Amino Acid , Substrate Specificity
7.
Plant Physiol ; 109(3): 999-1006, 1995 Nov.
Article in English | MEDLINE | ID: mdl-8552723

ABSTRACT

Immature coconut (Cocos nucifera) endosperm contains a 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT) activity that shows a preference for medium-chain-length fatty acyl-coenzyme A substrates (H.M. Davies, D.J. Hawkins, J.S. Nelsen [1995] Phytochemistry 39:989-996). Beginning with solubilized membrane preparations, we have used chromatographic separations to identify a polypeptide with an apparent molecular mass of 29 kD, whose presence in various column fractions correlates with the acyltransferase activity detected in those same fractions. Amino acid sequence data obtained from several peptides generated from this protein were used to isolate a full-length clone from a coconut endosperm cDNA library. Clone pCGN5503 contains a 1325-bp cDNA insert with an open reading frame encoding a 308-amino acid protein with a calculated molecular mass of 34.8 kD. Comparison of the deduced amino acid sequence of pCGN5503 to sequences in the data banks revealed significant homology to other putative LPAAT sequences. Expression of the coconut cDNA in Escherichia coli conferred upon those cells a novel LPAAT activity whose substrate activity profile matched that of the coconut enzyme.


Subject(s)
Acyltransferases/genetics , Cocos/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase , Acyltransferases/isolation & purification , Acyltransferases/metabolism , Amino Acid Sequence , Base Sequence , Cocos/enzymology , DNA Probes , DNA, Complementary/genetics , Escherichia coli/genetics , Escherichia coli Proteins , Gene Library , Molecular Sequence Data , Polymerase Chain Reaction , Recombinant Proteins/metabolism , Seeds/enzymology , Sequence Analysis , Sequence Homology, Amino Acid , Substrate Specificity
8.
Biochemistry ; 28(17): 6960-9, 1989 Aug 22.
Article in English | MEDLINE | ID: mdl-2510819

ABSTRACT

In photosystem II, electrons are sequentially extracted from water at a site containing Mn atoms and transferred through an intermediate carrier (Z) to the photooxidized reaction-center chlorophyll (P680+). Two polypeptides, D1 and D2, coordinate the primary photoreactants of the reaction center. Recently Debus et al. [Debus, R.J., Barry, B.A., Babcock, G.T., & McIntosh, L. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 427-430], have suggested that Z is a tyrosine residue located at position 161 of the D1 protein. To test this proposal, we have engineered a strain of the cyanobacterium Synechocystis PCC 6803 to produce a D1 polypeptide in which Tyr-161 has been replaced by phenylalanine. Wild-type Synechocystis PCC 6803 contains three nonidentical copies of the psbA gene which encode the D1 polypeptide. In the mutant strain, two copies were deleted by replacement with antibiotic-resistance genes, and site-directed mutations were constructed in a cloned portion of the remaining gene (psbA-3), carrying a third antibiotic-resistance gene downstream. Transformants were selected for antibiotic resistance and then screened for a photoautotrophy-minus phenotype. The mutant genotype was verified by complementation tests and by amplification and sequencing of genomic DNA. Cells of the mutant cannot evolve oxygen and, unlike the wild type, are unable to stabilize, with high efficiency, the charge-separated state in the presence of hydroxylamine and DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea]. Analyses by optical and EPR spectroscopy of reaction centers purified from this mutant indicate that Z can no longer be photooxidized and, instead, a chlorophyll cation radical, Chl+, is produced in the light. In the wild type, charge recombination between Z+ and the reduced primary quinone electron acceptor QA- occurs with a t1/2 of 80 ms. In the mutant, charge recombination between Chl+ and QA- occurs with a t1/2 of 1 ms. From these observations, we conclude that Z is indeed Tyr-161 of the D1 polypeptide.


Subject(s)
Chlorophyll/metabolism , Cyanobacteria/metabolism , Genes , Oxygen/metabolism , Plant Proteins/metabolism , Tyrosine , Base Sequence , Chlorophyll/genetics , Cyanobacteria/genetics , Electron Transport , Kinetics , Light , Light-Harvesting Protein Complexes , Molecular Sequence Data , Mutation , Photosynthetic Reaction Center Complex Proteins , Photosystem II Protein Complex , Plant Proteins/genetics , Restriction Mapping
9.
J Biol Chem ; 263(18): 8972-80, 1988 Jun 25.
Article in English | MEDLINE | ID: mdl-3288627

ABSTRACT

Mutant LF-1 of the green alga Scenedesmus obliquus has been described by Metz and co-workers (Metz, J. G., Pakrasi, H., Seibert, M., and Arntzen, C. J. (1986) FEBS Lett. 205, 269-274) to be inactive for light-driven oxygen evolution, despite a functional Photo-system II reaction center. A polypeptide, D1, implicated in the ligation of the primary photoreactants of photosystem II, was shown to migrate with an apparent higher molecular mass on LDS-PAGE in the mutant than in the wild-type (WT) strain. We show here that polypeptide D1 is synthesized in a precursor form in Scenedesmus WT. Following synthesis and insertion into the thylakoid membrane, a 1.5-2-kDa oligopeptide is clipped off with a half-time of 1-2 min, yielding the mature 34-kDa form of the polypeptide. No processing of polypeptide D1 from mutant LF-1 was observed to take place. We show here that polypeptide D1 of LF-1 displays an identical proteolytic fingerprint pattern to the precursor D1 polypeptide of the wild-type strain. These both have molecular masses about 1.5-2 kDa higher than that of the mature WT polypeptide. A polyclonal antibody elicited by a synthetic oligopeptide (14-mer), predicted from the psbA gene nucleotide sequence to be homologous to the COOH terminus of the precursor D1 of spinach, cross-reacts only with D1 of mutant LF-1 and not with mature D1 of spinach, Chlamydomonas, or of Scenedesmus WT. This observation demonstrates that the greater molecular mass of polypeptide D1 from mutant LF-1 and of Scenedesmus WT precursor D1 is derived from a COOH-terminal extension. We conclude that the LF-1 mutant lacks the appropriate nuclear-encoded protease which processes polypeptide D1 at its COOH terminus from the precursor to the mature form. Such processing would appear to be a necessary step toward the stable incorporation of manganese into the oxygen-evolving site.


Subject(s)
Chlorophyll/metabolism , Chlorophyta/metabolism , Oxygen/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Cell Membrane/metabolism , Chlorophyll/biosynthesis , Chlorophyll/genetics , Chlorophyta/genetics , Kinetics , Light-Harvesting Protein Complexes , Macromolecular Substances , Models, Biological , Molecular Sequence Data , Mutation , Photosynthetic Reaction Center Complex Proteins , Photosystem II Protein Complex , Plant Proteins/biosynthesis , Plant Proteins/genetics , Protein Processing, Post-Translational
10.
Biochemistry ; 24(14): 3638-45, 1985 Jul 02.
Article in English | MEDLINE | ID: mdl-2994713

ABSTRACT

Optical, resonance Raman, and electron paramagnetic resonance spectroscopies have been used to characterize the ligands and spin state of the chloroplast cytochrome b-559. The protein was isolated from both maize and spinach in a low-potential form. The spectroscopic data indicate that the heme iron in both ferric and ferrous cytochrome b-559 is in its low-spin state and ligated in its fifth and sixth coordination positions by histidine nitrogens. Electron paramagnetic resonance data for the purified spinach cytochrome are in good agreement with those determined by Bergström and Vänngård [Bergström, J., & Vänngård, T. (1982) Biochim. Biophys. Acta 682, 452-456] for a low-potential membrane-bound form of cytochrome b-559. The g values of high-potential cytochrome b-559 are shifted from those of its low-potential forms; this shift is interpreted as arising from a deviation of the planes of the two axial histidine imidazole rings from a parallel orientation. The model is consistent with the physical data and may also account for the facility with which cytochrome b-559 can be converted between low- and high-potential forms. Recent biochemical and molecular biological data [Widger, W. R., Cramer, W. A., Hermodson, M., Meyer, D., & Gullifor, M. (1984) J. Biol. Chem. 259, 3870-3876; Herrmann, R. G., Alt, J., Schiller, D., Cramer, W. A., & Widger, W. R. (1984) FEBS Lett. 179, 239-244] have shown that two polypeptides, one with 83 residues and a second with 39 residues, most likely constitute the protein of the cytochrome.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Chloroplasts/metabolism , Cytochrome b Group/metabolism , Photosystem II Protein Complex , Plants/metabolism , Binding Sites , Electron Spin Resonance Spectroscopy , Heme/metabolism , Macromolecular Substances , Protein Binding , Spectrophotometry , Spectrum Analysis, Raman
11.
Plant Physiol ; 76(3): 829-32, 1984 Nov.
Article in English | MEDLINE | ID: mdl-16663933

ABSTRACT

Photosystem II (PSII) reaction center core complexes have been isolated and characterized from wild type (WT) Scenedesmus obliquus and from its LF-1 mutant. LF-1 thylakoids are blocked on the oxidizing side of PSII and have a reduced Mn content. Visible absorption and low temperature fluorescence spectra of both core complexes are identical and resemble those reported for spinach (Satoh, Butler 1978 Plant Physiol 61: 373-379). Lithium dodecyl sulfate-polycrylamide gel electrophoresis reveals that a protein alteration, originally observed in thylakoid membranes (Metz, Wong, Bishop 1980 FEBS Lett 114: 61-66), is retained in the PSII core particles. That is, a 34-kilodalton (kD) polypeptide, present in the WT core complex, is missing in the mutant, and the core complex of the mutant contains a 36-kD protein not present in the WT. The 34-kD intrinsic protein is also observed in O(2)-evolving PSII preparations and PSII core complexes from spinach. It is distinct from the 33-kD extrinsic protein first reported by T. Kuwabara and N. Murata (1979 Biochim Biophys Acta 581: 228-236). We suggest that the 34-kD protein is a site of Mn binding in the PSII membrane.

12.
Plant Physiol ; 75(1): 238-41, 1984 May.
Article in English | MEDLINE | ID: mdl-16663581

ABSTRACT

Use of the octyl beta-d-glucopyranoside solubilization procedure of Camm and Green (1980 Plant Physiol 66: 428-432) reveals that thylakoid membranes of a photosystem (PS) II-deficient maize (Zea mays L.) mutant lack two chlorophyll protein (CP) complexes associated with PSII, i.e. CPa-1 and CPa-2. In contrast, when lithium dodecyl sulfate is used to solubilize the membranes of the mutant prior to electrophoretic separation, a CP complex is observed which has a mobility similar to that of CPa-2. Comparison of spectral characteristics and polypeptide composition of the green bands in this region taken from samples of the mutant, normal sibling control plants and from PSII preparations indicate that the CP complex observed in the mutant represents a portion of a light-harvesting complex of PSI (Mullet et al. 1980 Plant Physiol 65: 814-822). The green band observed in normal maize samples can contain both the CPa-2 complex as well as the CP complex derived from the PSI antennae system.

13.
Plant Physiol ; 73(2): 452-9, 1983 Oct.
Article in English | MEDLINE | ID: mdl-16663238

ABSTRACT

Two high fluorescent, nuclear recessive mutants of maize (Zea mays L.), designated hcf-2 and hcf-6, are described which are missing the chloroplast cytochrome f/b-563 complex. Thylakoids from the mutants show a block in whole chain electron transport activity (H(2)O to methyl viologen), while retaining activities associated with photosystem II (H(2)O to phenylenediamine) and photosystem I (diaminodurene to methyl viologen). Chemically induced, optical difference spectra indicate a loss of cytochromes f and b-563. Cytochrome b-559 is present in both high and low potential forms. EPR analyses of thylakoid membranes of hcf-6 reveals the lack of a signal (g = 1.90) associated with the Rieske Fe-S center. Additionally, hcf-6 is lacking EPR signals at g = 6 (attributable to the high spin ferric heme of cytochrome b-563) and g = 2.5 (unidentified). The mutant retains signals at g = 2.9 (cytochrome b-559) and at g = 4.3 and 9 (both signals probably arising from a storage form of ferric iron).Thylakoid polypeptides are examined using polyacrylamide gel electrophoresis. hcf-2 and hcf-6 have identical profiles, showing losses of polypeptides with apparent molecular masses of 33 (cytochrome f), 23 (cytochrome b-563), and 17.5 kilodaltons. The protein associated with the Rieske Fe-S center could not be determined from the gel profiles. Additionally, both mutants show an increase in a band with a molecular mass of 31 kilodaltons.

SELECTION OF CITATIONS
SEARCH DETAIL
...