Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 273: 107383, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237239

ABSTRACT

Many countries are considering nuclear power as a means of reducing greenhouse gas emissions, and the IAEA (IAEA, 2022) has forecasted nuclear power growth rates up to 224% of the 2021 level by 2050. Nuclear power plants release trace quantities of radioxenon, an inert gas that is also monitored because it is released during nuclear explosive tests. To better understand how nuclear energy growth (and resulting Xe emissions) could affect a global nonproliferation architecture, we modeled daily releases of radioxenon isotopes used for nuclear explosion detection in the International Monitoring System (IMS) that is part of the Comprehensive Nuclear Test-Ban Treaty: 131mXe, 133Xe, 133mXe, and 135Xe to examine the change in the number of potential radioxenon detections as compared to the 2021 detection levels. If a 40-station IMS network is used, the potential detections of 133Xe in 2050 would range from 82% for the low-power scenario to 195% for the high-power scenario, compared to the detections in 2021. If an 80-station IMS network is used, the potential detections of 133Xe in 2050 would range from 83% of the 2021 detection rate for the low-power scenario to 209% for the high-power scenario. Essentially no detections of 131mXe and 133mXe are expected. The high growth scenario could lead to a 2.5-fold increase in 135Xe detections, but the total number of detections is still small (on the order of 1 detection per day in the entire network). The higher releases do not pose a health issue, but better automated methods to discriminate between radioactive xenon released from industrial sources and nuclear explosions will be needed to offset the higher workload for people who perform the monitoring.


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Humans , Xenon Radioisotopes/analysis , Air Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Xenon/analysis , Isotopes
2.
J Environ Radioact ; 250: 106916, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35605518

ABSTRACT

The noble gas collection and measurement stations in the International Monitoring System (IMS) are heavily influenced by releases from medical isotope production facilities. The ability to reliably model the movement of radioxenon from the points of release to these IMS samplers has improved enough that a routine aspect of the analysis of IMS radioxenon data should be the prediction of the effect of releases from industrial nuclear facilities on the sample concentrations. Predicted concentrations at IMS noble gas systems in Germany and Sweden based on measured releases from Institute for Radioelements (IRE) in Belgium and atmospheric transport modeling for a four-month period are presented and discussed.


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Air Pollutants, Radioactive/analysis , Industry , Isotopes/analysis , Radiation Monitoring/methods , Xenon Radioisotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...